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1.0 INTRODUCTION

NASA interest in considering an improved SRM (Block II) for the Space Shuttle led

to parallel studies by five contractors of alternative designs of the Space

Transportation System (STS) Solid Rocket Motor (SRM). The conceptual design

studies of a Block II SRM required elimination of asbestos-filled insulation and

was open to alternate designs, such as case changes, different propellants,

modified burn rate -- to improve reliability and performance. Limitations were

placed on SRM changes such that the outside geometry should not impact the

physical interfaces with other Space Shuttle elements and should have minimum

changes to the aerodynamic and dynamic characteristics of the Space Shuttle

vehicle.

The Space Division of Morton Thiokol, Inc., has completed a conceptual

design study of the Block II SRM for the George C. Marshall Space Flight Center

(MSFC) in accordance with contract NAS8-37296. The study, as described in this

report, is based on a careful assessment of previous Space Shuttle SRM experience

and on new design concepts combined to define a valid approach to assured flight

success and economic operation of the STS. Covering approximately 120 days,

September through December 1986, the study effort included the tasks outlined in

Figure 1. As the study progressed interim reviews were held with the NASA Block

II SRM Study Manager and a mid-term (60-day) briefing was presented at MSFC. The

60-day briefing included details of SRM segment joint design concepts and was

supplemented with preliminary versions of the Conceptual Design Package and the

Development and Verification Plan.

This report presents the results of Morton Thiokol's Block II SRM Conceptual

Design Study. The report documents trade studies, preliminary designs, analyses,

plans, and cost estimates in two volumes. In Volume I, Book I comprises the

Conceptual Design Package including a Preliminary Part 1 Contract End Item (CEI)

Specification as an appendix, and Book 2 comprises the Preliminary Development

and Verification (D&V) Plan. Volume II includes Morton Thiokol's Capability

Assessment Report as Book 1 and ROM Cost Estimates as Book 2.

1-1_
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1.1 NOMENCLATURE

Throughout this report references to various versions of the STS SRM are

made in the following manner:

SRM is a categorical item referring to any of the individual

configurations.

High Performance Motor (HPM) refers to the SRM configuration,
manufactured by Morton Thiokol, and used on all Shuttle flights
from STS-8 onward.

Redesigned Solid Rocket Motor (RSRM) refers to the redesigned
configuration recently approved by MSFC at the Preliminary Design
Review which is now proceeding toward the Critical Design Review

scheduled for August 1987.

SRM II or the Block II SRM refers to the baseline design culminating
from Morton Thiokol's Block II SRM Conceptual Design Study.

1.2 REQUIREMENTS

Groundrules for the Block II SRM Conceptual Design Studies were established to

ensure compliance with existing STS requirements while allowing flexibility for

design concepts that offered potential improvements in reliability, performance,

and cost. The Block II SRM studies were conducted in parallel with the quali-

fication of a Redesigned Solid Rocket Motor (RSRM) and requirements were adjusted

to agree with the applicable new criteria. In addition, previous studies have

projected increased payload capability for the Space Shuttle flown in a "heads-

up" launch trajectory with a new thrust-time history provided by the SRM. The

heads-up thrust versus time criteria for the SRM were included as a desirable

goal for Block II SRM concepts as long as reliability and safety were not

compromised.

A preliminary Part I Contract End Item (CEI) specification, CPWI-1900, is

included as an appendix to this volume. The preliminary CEI specification

presents the performance, design, and verification requirements for Morton

Thiokol's Space Shuttle Block II SRM. The requirements in the CEI specification

1-3



are traceableto the groundrulesdefined in the statementof work for Contract
NAS8-37296which are summarizedbelow:

a. The existing performance, design, and verification requirements contained in
Specification Number CPWl-3300, Part 1, for the Space Shuttle High Perform-
ance Solid Rocket Motor shall be the baseline requirements document for
proposed design concepts except as changed and/or amplified below. Refer-
ences to specific design characteristics such as segmented cases and other
motor design characteristics and/or specification requirements unique to the
present design are deleted. Where these references are deleted the contrac-
tor shall interpret that he has the option to select the specific design
characteristics that best suit his overall Block II motor design concept.

(The baseline requirements document is supplemented with preliminary CE1
specification CPWl-3600 for the RSRM and an applicable Review Item Dis-
crepancy (RID) package. These items were provided for information and
guidance during the course of the study.)

b. Design concepts must essentially duplicate the outside geometry of the
current Space Shuttle SRM and its interfaces with other Space Shuttle
elements such that impact to the aerodynamic and dynamic characteristics of
the Space Shuttle vehicle is minimized.

c. Design concepts shall not use asbestos-filled insulation materials.

d. Design concepts are not constrained to the current propellant formulation
but shall provide the capability to successfully perform over an equivalent
PBAN propellant formulation burn rate range of 0.360 to 0.400 in./sec (at
625 psi and 60°F). For information, the performance data contained in CPW1-
3300 is based on a PBAN propellant formulation with a target burn rate of
0.368 in./sec (at 625 psi and 60°F).

(The performance envelope was defined by thrust versus time traces for the
nominal HPM and for a "heads-up" thrust versus time trace. The Block 1I SRM
studies should determine performance capability within that envelope. Scc
Figure 2.)

e. Performance shall be in accordance with the requirements contained in CPW1-
3300 from the sea level to 200,000 ft over a propellant mean bulk tempera-

ture (PMBT) range of +40 to +90°F after being subjected to the natural and
induced environments specified in paragraphs 3.2.7.1 and 3.2.7.2, respec-
tively, of CPW1-3300 to the extent that the PMBT range of +40 to +90°F is
not violated.

f. Any Criticality 1, 1R, 2, and 2R pressure seal shall be fully redundant and
verifiable (inspected and leak tested in prescribed functional location).
Further, no seal shall require pressure actuation to perform its designed
function.

g° Verification methods prescribed in Section 4.0, Table V, of CPWl-3300 arc
deleted and method of verification shall be a product of this study con-
tract.

h. Appendix 10, deviations, and any references to approved deviations are
deleted from CPWl-3300.
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2.0 BLOCK II SRM CONFIGURATION SELECTION

As the incumbent contractor for the Space Shuttle SRM, Morton Thiokol has a

complete understanding of program issues that must be handled in the development,

verification, production, and flight of this important element of the Space

Transportation System. We have drawn on this experience and associated important

events to develop concepts for a Block II SRM. This background also lends

confidence to the Development and Verification (D and V) approach; credibility to

the assessment of our Space Division's D and V and production capability; and

realism to the ROM cost estimates -- items which are treated in other books of

this report.

In completing this study and recommending a Block II SRM concept we have

recognized that a new design could have great impact on the existing infrastruc-

ture for development production and operation of the SRM. Elements of this

infrastructure include the analysis tools; management, engineering, and produc-

tion team; component test capability; motor test facilities; review procedures;

material suppliers; subcontractor teams; quality assurance and NDE systems;

safety assessments and procedures; production facilities and tools; manufacturing

plans and documentation; logistics support; storage facilities; transportation

system; launch site facilities and GSE; launch support team; recovery equipment;

disassembly facilities, and refurbishment facilities and equipment. One con-

sideration in judging design concepts was the degree to which they could utilize

the previous investments in these demonstrated capabilities.

The study was influenced by implications that changes from demonstrated

successful solid rocket industry experience would have an uncertain influence on

system safety, reliability, performance, cost, and development risk (schedules

and cost). For this reason a review of industry experience was completed early

in the study and was a factor in selecting the preferred motor configuration.

This previous experience and the ongoing efforts to qualify the RSRM and

resume Space Shuttle flights provide the solid rocket industry with a technology
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baseto proposeBlock II SRMconcepts.Morton Thiokol's criteria for selecting

the SRM II configuration were prioritized as follows:

1. Assure system reliability

2. Maintain/increase performance

3. Enhance cost effectiveness

The study approach used to establish our recommended concept is illustrated

in Figure 3.

2.1 INDUSTRY EXPERIENCE

Since the 1960s, interest in the high thrust levels available in efficiently-

sized solid rocket motors has led to technology demonstration programs for large

boosters to support space launch systems. The relatively simple solid rocket

design and cost effectiveness were key factors in selecting large solid rocket

motors for strategic missile applications and for space launchers such as Titan

and Space Shuttle. These technology demonstrations and production operations

form the most applicable experience base of the solid rocket industry.

2.1.1 Space Shuttle SRM

Development of the Space Shuttle SRM was started by Morton Thiokol in 1974

leading to an initial static test in 1977 and delivery of the first flight set of

SRMs to KSC in 1979. Seven full scale static tests were conducted in the

development and qualification effort and six flight sets of motors were de-

livered. A modified design, called the high performance motor (HPM), was quali-

fied with two additional static tests, and the HPM was used for Shuttle flights

from STS-8 onward. A filament-wound case (FWC) version of the SRM was also

designed and carried through two static tests to date.

Facilities are in place at Morton Thiokors Space Division to produce the

HPM to support Shuttle flights at rates of more than 24 flights per year.

Through 1985 more than 60 motors had been manufactured for flight.

The HPM configuration consists of four motor segments with a separate aft

exit cone assembly. The ignition system is installed in the forward segment and

a movable nozzle is attached to the aft segment. The four segments and exit cone

2-2



o

A

(n
t-
O

•_(n I
Qp

r_

<

-._ ._o

r_ r- *,-,
C t_ e-

e- .=-

o<_ _ ._ _-"
_°-- = _ = ,-

rr u. rr I_

c o _>"

c_ _ ._ _ _

, _,_ __ l.IJ

0 _ • • • •

-_|

_,_ o

I II I II I I
o "_ _

(n ¢_-_ _ _ .= . oo® _ _ :_--- .- -_'=. -_.-_

_I
rn

0
O

rJ

0 ._1

U
0

2-3



are assembled at the launch site to complete the 146-in.-diameter motor. The HPM

is 126 ft long and weighs 1,255,750 Ibm including l,110,000 Ibm of propellant.

The largest unitary propellant grain is cast in the forward segment which

contains 300,000 Ibm of PBAN propellant.

The Shuttle SRM development and production project achieved several impor-

tant goals including:

o Largest solid rocket motor brought to operational status

o Successful recovery and reuse of major metal components

o Thrust-time trace reproducibility and flight pair thrust matching to meet
design specifications

o Largest vectoring nozzle used for flight control

These achievements and the success of most aspects of the manufacturing and

operations processes form an important base for substantiating proposed Block II

SRM concepts.

Following the 51-L flight failure of the aft-center-to-aft-segment joint

leading to the destruction of the Challenger, an intensive review and redesign

program is underway. The redesigned motor (RSRM) development and qualification

is being supported by extensive analysis tools and new full scale component test

vehicle. The program will include six static tests leading to RSRM qualifica-

tion.

The RSRM project will verify the reliability of a new field joint concept

before Space Shuttle flights resume. Subsequent production and flight operations

will accumulate an expanding demonstrated database. Block II SRM concepts that

can benefit from this experience in manufacturing and operations will have

additional credibility for successful development and reliable flight perform-

ance.

2.1.2 Large SRM Review

The experience of the solid rocket industry with large solid rocket motors was

reviewed to establish the range of capabilities previously demonstrated. An
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understanding of this background is useful in estimating the degree of certainty

to assume for the success of a new Block II SRM concept. The following Table 1

summarizes industry experience with solid rocket motors requiring more than

50,000 Ibm of propellant cast in a single grain.

Table 1. Large Solid Propellant Grains

Approximate
Propellant Transported to

Motor Designation Number Weight Test Launch
(Diameter) Produced (Klbm) Site Site

Titan Segment > 500 70 Y Y
(120)

Peacekeeper > 50 100 Y Y
(92)

156 Segment 19 200 Y N
(156)

156 Monolithic 3 300 Y N

(156)

Shuttle Segment > 300 300 Y Y
(146)

260 Monolithic 3 1,650 N N
(260)

The most extensive usage of large solid propellant grains has occurred in

the Titan program with the production of 120-in.-diameter segments containing in

excess of 70,000 Ibm of propellant. The largest propellant grains to be cast on

a production basis are the Shuttle SRM segments which contain approximately

300,000 Ibm of propellant.

The 260-in. motor program cast the largest propellant grain to date

(1,650,000 Ibm). This technology demonstration program assembled, cast, and

tested the motors in a vertical pit. None were moved after the propellant

casting was complete. The third motor of the series experienced operating

anomalies apparently related to breakup of the grain and ejection of unburned

pieces of propellant.
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All of the motors in the table usedPBAN propellant, except for the more

recently-developedPeacekeeperStageI motor which usesan HTPB propellant.

2.1.3 Technology Status

In addition to understanding the experience level for design, manufacture,

inspection, test, transport, handling, and launch of large solid rocket motors,

the Block II SRM concept study should recognize the available technology for the

mid-1980s. Design decisions based on the technology available at the beginning

of the Shuttle SRM project were revisited to determine if new options are

pertinent.

Propellant selection for the Shuttle SRM was driven by the extensive success

with PBAN formulations in earlier strategic missile applications. HTPB formula-

tions with higher energy were considered, but not selected because of limited

experience. Today the PBAN propellant still has an unmatched history of produc-

tion quantity, but the HTPB formulations have reached a mature status and are

used in many production programs. The largest motor using HTPB propellant is the

Peacekeeper Stage I produced at Morton Thiokol's Strategic Division. The total

annual production of HTPB propellant in the industry is presently measured in

millions of pounds annually. An HTPB propellant could provide performance

benefits for a Block II SRM and could be introduced without significant risk. An

extensive database exists to support the development and the production

reliability.

A D6AC steel was chosen for the segmented Shuttle SRM case. Maraging 200

steels were not chosen even though they had been used in several of the previous

large motor demonstration programs. Among the factors ruling them out was

concern over their availability and cost stability. This issue was caused by the

strategic metal cobalt which was a critical constituent of the maraging steels in

the 1960s. New maraging steels that use titanium for strengthening and no cobalt

are now available such as MAR T-250. This steel offers improved design pro-

perties and new options for case fabrication. A new case material could be

introduced for a Block II SRM with completion of material characterization using

well-established test procedures.
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Nozzleablative materialswere selectedin the original Shuttle SRM design

based on extensive previous history with rayon-based carbon phenolics. More

recent testing and demonstration of improved PAN materials indicate better

material performance in the nozzle environment. A Block II SRM nozzle could take

advantage of these newer materials to ensure the integrity of the ablative

insulators.

New requirements for a Block II SRM forbid the use of materials containing

asbestos. While an impressive list of candidate materials is available, addi-

tional data are needed to substantiate the performance of nonasbestos insulation

materials for all the environments in the motor. These data are forthcoming from

aggressive research and testing programs within the industry. While several

candidates may be available soon, present knowledge leads to recommendation of

previously-used asbestos-free NBR and EPDM formulations with known success in

fabricating high quality insulators and achieving adequate bond strength with

case and propellant.

2.2 MONOLITHIC MOTOR CONCEPTS

A monolithic motor, with a unitary propellant grain, is one concept considered

for the Block II SRM. This configuration could most easily be achieved by

assembling existing or redesigned steel segments into a complete case. After the

case is insulated and lined the 1.1 million pound propellant grain is cast in the

motor. Subsequent assembly, test, transport, and launch operations would handle

the motor as a single piece. A new one-piece case of steel or composite mate-

rials is an option for the monolithic motor with additional development effort.

Our study evaluated the attributes of the monolithic concept relative to the

demonstrated segmented SRM. Issues of feasibility, reliability, performance, and

cost were considered. This assessment is summarized in Table 2 for SRM Design

Features and Performance; for SRM Manufacture and Critical Processes; and for

Facilities and Equipment.

A key issue facing the monolithic motor concept is the total lack of a

database for production of and operations with a unitary propellant grain in a

motor of the size required for a Block II SRM. To produce a monolithic SRM
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Table 2. Monolithic SP@I Comparisons With Segmented S_

• No Change ? TBD

A B C + Improvement ,J Concern

SRM Design Features and Performance

• • + Case Inert Weight

• • + Case Joint Structure

• + + Case Joint Seals

• • • Nozzle/Igniter Joints and Seals

• ? ? Propellant Grain Integrity

• ? _ Ballistic Performance

A. Segmented motor design (similar to PDR baseline)

B. Monolithic motor design--Segmented case

C. Monolithic motor and case design
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Table 2. Monolithic SRM Comparisons With Segmented SRM (Cont)

• No Change ? TBD

A B C + Improvement _/Concern

• .

• #

• #

• #

• _

• _

SRM Manufacture and Critical Processes

Case Fabrication

Case Preparation Process

Case Insulation Process

Propellant Grain Casting Methods

Motor Handling

Discrepant Motor Dispostion

A. Segmented motor design (similar to PDR baseline)

B. Monolithic motor design-Segmented case

C. Monolithic motor and case design

2-9



Table 2. Monolothic SRM Comparisons With Segmented SRM (Cont)

A

• No Change

B C + Improvement

? TBD

Concern

?

7

Facilities and Equipment

? Manufacturing Location

? Transportation Methods

_/ Delivery Access to Both STS Launch Sites

_/ Cost for SRM Processing Facilities/Equipment

-_ Cost for Launch Site Facilities/Equipment

_/ Cost for Case Refurbishment Facilities/Equipment

A. Segmented motor design (similar to PDR baseline)

B. Monolithic motor design--Segmented case

C. Monolithic motor and case design
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substantially altered manufacturing processes are required, new facilities must

be qualified, transportation and handling methods must be developed, and launch

site operations must be demonstrated. With essentially no experience with these

methods at this scale it is difficult to project a high system reliability with

confidence. Critical processes including total case insulation, lining opera-

tions, and propellant casting are areas where consistent integrity of the product

must be demonstrated at full scale. An example of this concern is the erratic

operation of the third 260-in. monolithic test motor apparently due to a progres-

sive propellant grain failure.

The process control issues are increased by the configuration of the Shuttle

SRM if the case is handled as a monolithic unit. The fineness ratio (L/D) of the

motor and propellant grain would be much greater than any of the large solid

rocket motors previously manufactured (Table 3). The tooling and equipment to

control the manufacturing process would increase in complexity accordingly.

Table 3. Chamber Fineness Ratio for Large Solid Propellant Grains

Motor Approximate
Designations Propellant Wt. Chamber

(Diameter) (Klbm) (L/D)

Peacekeeper 100 3.0
(92)

Titan Segment 70 1.0
(120)

Shuttle Segment 300 2.6
(146)

260 Monolithic 1,650 2.8
(260)

Shuttle Monolithic 1,100 9.5
(146)

These producibility issues and the high cost associated with conducting the

necessary D and V effort to provide the substantiating data for a monolithic

motor led to a decision to continue with the segmented approach in the Block II

SRM study.
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No facilities are in place to handle the complete fabrication of monolithic

motors for development and test facility access is an issue. We assessed the

cost of acquiring monolithic grain manufacturing capability by assuming a new

plant could be activated at a coastal location. Costs for facilities and tooling

to support the development and production of the monolithic SRM were estimated at

$325M. This estimate assumed use of existing Space Division facilities for

individual case segment insulation prior to assembly, for all refurbishment

operations, for nozzle and igniter manufacturing. A substantial additional

investment is necessary for barge transportation and transportation support

equipment, and for new facilities, handling equipment, and GSE at the KSC and

VAFB launch sites.

Our assessment of the monolithic SRM concept concluded that configurations

could be proposed to meet the necessary thrust versus time requirements and that

grain stress analyses would predict adequate margins. The development of a

monolithic SRM is feasible, but would require a substantial D and V effort. Key

demonstrations are necessary at full scale including: ballistic reproducibility

and motor pair thrust balance; consistency in processing and casting propellant

to produce acceptable mechanical properties with control of voids and porosity;

and maintaining insulation quality and bonding integrity during extended motor

processing.

Although the insulated joints of the monolithic SRM is a method of improving

case joint reliability, the total reliability increase of this concept is

uncertain. Questions relative to the ability of manufacturing processes to

control the integrity of the propellant grain and other critical features exist

because the monolithic SRM represents a substantial departure in scale from

previous successful experience.

A Block II SRM concept is best assured of success if it builds on a substan-

tial base of experience. Segmented designs can benefit from the production and

operations experience of the Shuttle SRM and other large motor programs. No

large deviation is required from demonstrated facilities, processes, transport,

and launch site handling if a new segmented design is selected. The specific
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reliability improvements being developed and demonstrated for the RSRM case and

insulation joint can be enhanced for a Block II SRM design that can consider a

wider range of options.

2.3 BLOCK II SRM PERFORMANCE OPTIONS

The baseline Block II SRM design concept recommended from this study is discussed

in detail in Section 3. A segmented design was selected to take advantage of the

substantial successful experience with this approach for large solid rocket

motors. A new case design is proposed with the potential for improvement in the

integrity of assembly joints. The steel case material will ensure reusability

and maintain the cost benefits demonstrated from recovery and refurbishment of

large metal components in the Shuttle program. Nozzle and propellant changes are

also proposed for the Block II SRM.

The selected configuration and component designs were chosen to provide the

largest payload increase for the Space Shuttle (9,900 Ibm) based on rough

performance estimates using constant exchange ratios. The Block II SRM concept

presupposes a benefit for Shuttle capabilities from delivering the heads-up

thrust versus time profile. This higher performing configuration can be de-

veloped with no significant loss in design reliability, but the development

effort is increased by implementing changes in all the major elements of the

motor. More modest payload gains are available with a reduced development

effort.

A range of performance gains was estimated for various combinations of case

design, nozzle design, and propellant formulation. The data were prepared for

both the nominal STS launch mode (Table 4) and the heads-up launch mode

(Table 5).
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3.0 BLOCK II SRM CONCEPTUAL DESIGN

In the following discussions, we describe many of the details of our conceptual

Block II SRM design. The selections of the detail concepts are supported by

described trade studies or rationale. The design studies and concept selections

have exploited the many years of personal experience of the SRM design and

management team at Morton Thiokol. The lessons learned during the past 12 years

of SRM development, manufacture, and flight have been observed. Further, the

design analyses and tests of the ongoing SRM redesign (culminating recently in

the RSRM PDR configuration) have provided many inputs to this Block II SRM study,

and have been a synergistic benefit to the definition of a Block II SRM

configuration.

3.1 BLOCK II SRM DESIGN DESCRIPTION

Morton Thiokol's Block II SRM design (Figure 4) is a segmented steel case motor

which meets the outline envelope and interface requirements of the HPM. This

Block II SRM could be substituted directly into the STS flight configuration

with no modifications to the solid rocket booster (SRB) or attaching hardware.

The overall motor weight is 1,260,929 lb; it produces a vacuum total impulse of

296,468,090 lbf-sec, and meets the heads-up thrust versus time requirement.

Using this motor configuration would result in a payload increase of 9,877 Ibm

with an assumed heads-up Space Shuttle flight mode. A similar motor design

concept, using a lower propellant burn rate to duplicate the HPM thrust-time

trace, would provide a payload increase of 7,593 Ibm for the current standard

Space Shuttle launch trajectory (heads-down).

several features of the design as shown below:

Area Affecting Payload

The payload increases come from

Payload Increase (Ibm)

Heads-up Heads-down

Inert Weight Reduction 3,485 5,121
Propellant (HTPB) 2,044 1,688
I (HTPB Improved 848 784
SPPerformance)

Heads-up Flight Mode 3.500 0
Total 9,877 7,593
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The Block II SRM is manufactured in four segments of the same length as

presently used for the HPM. For launch site assembly of the three mating joints

between segments, the design employs a tang and clevis plus capture feature field

joint (Figure 5). The configuration is similar to the RSRM design, but improve-

ments are incorporated and acccommodated by the new case forgings. The design

details also consider the higher strength steel and the higher motor operating

pressure necessary for the heads-up thrust-time trace.

The selected case material, maraging T250 steel, offers several advantages

to a Block II SRM. First, the design allowable strengths for T250 steel are 20

percent greater than that provided by the D6AC steel used in the present case.

With this material, longer case segments can be fabricated by circumferentially

welding two steel case sections together. Welding will replace the tang and

clevis configuration and the pins used at the current HPM factory joints at the

forward dome and case cylinder interfaces. Thus, the additional inert weight of

the six factory joints is eliminated. Using this concept, a Shuttle payload

increase of 2,292 Ibm is attributable to the case weight reduction achieved by

using the higher strength material and the longer welded case segment configura-

tion.

Although the final configuration of the aft segment is the same, the aft

dome and nozzle are assembled to the aft casting segment in a different manner

than used previously with the HPM. For the Block II SRM an integral one-piece

aft dome and conical fixed nozzle housing is used to close the aft end of the

case and provide structural support for the movable nozzle. This maraging T250

steel component is fully insulated and combined with the forward section of the

nozzle to form an aft closure subassembly. This aft closure subassembly is

attached to the aft segment after the propellant is cast and cured. The attach-

ment joint for the aft closure is located at the outer diameter of the motor

behind a split flap that is bonded to the propellant grain (Figure 6). At this

location the joint is exposed to a less erosive environment than the present

nozzle-to-case joint. The aft closure is assembled to the aft segment at the

factory using a tang and clevis structural joint that is identical to the Block

II SRM field joints.
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The case insulation selected for the Block II SRM is a silica-filled NBR

with carbon fiber-filled EPDM used in the areas where higher erosion resistance

is required. These two nonasbestos materials have been used in the current HPM

motor and have well known characteristics for bonding to case and propellant.

Extensive material development is avoided and additional processing development

will be minimal.

The solid propellant grain configuration will be identical to the HPM. For

the Block II SRM the propellant will be Morton Thiokol's DL-H396 HTPB formulation

containing 88 percent solids. This propellant formulation uses an iron oxide

burn rate catalyst and is a variant of the 88 percent solids HTPB propellant used

successfully in the Peacekeeper Stage I motor. The HTPB polymer selected is the

commercial HT material produced by ARCO, and the aziridine bonding agent HX-752

will be used. Raw material costs and propellant processing cycles are very close

to those for the PBAN propellant used in the HPM. The more dense and more

energetic HTPB formulation produces a performance improvement over the PBAN

propellant with a density and Isp gain that results in a Shuttle payload increase

of 2,750 Ibm for the heads-up (2,177 Ibm for heads-down) flight mode due to these

factors alone.

To assure reliable bonds of the propellant grain to the NBR insulation, a

well-demonstrated HTPB liner formulation (UF-2155) will be used. This liner,

used in many HTPB propellant motors (e.g., Peacekeeper, PAM D-II, MK-104),

contains no asbestos floats.

The ignition system for the Block II SRM design is similar to that used by

the HPM. No changes are planned in igniter propellant, thermal insulation, or

structural materials. To reduce the inert weight, a shorter housing and a more

efficient grain design are proposed. The igniter is also modified to simplify

the assembly and reduce the number of seals.

The Block II SRM nozzle complies with the external envelope requirements for

the Shuttle motor and maintains the 7.72 expansion ratio and nozzle throat

diameter presently used by the HPM. Significant changes are made in materials
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and componentsto meet the structure and ablative designsafety factors while

achieving a net reduction in weight. The nozzleweight changeaccountsfor 1,010
Ibm of the total Shuttle payload increasenotedin earlier paragraphs.

The proposednozzledesign(Figure 7) includes thesefeatures:

1. Flexible bearing TVC (omniaxial + 8-deg vectoring).

2. "Conical" bearing with a separate sacrificial bearing for thermal protection
(polyisoprene elastomer with no asbestos for both bearings).

3. Polyacrylonitrile (PAN) carbon-cloth phenolic ablative insulators.

4. Graphite filament wound exit cone structure.

5. Steel (D6AC) nozzle structure components.

6. Dual verifiable seals at all internal joints of steel structure.

The revised geometry of the flexible bearing changes the nozzle's center of

rotation, which, in turn, will impact the stroke requirements of the actuators

(shorter stroke required). This bearing, with its sacrificial thermal protection

bearing, however, requires less actuation torque. Consequently, the existing

actuators and TVA system should provide the requisite thrust vector control for

the Shuttle system. The materials used in the bearings -- steel shims and

polyisoprene rubber in the main bearing and carbon cloth phenolic shims and

polyisoprene rubber for the sacrificial bearing -- have been proven in some of

the following motors: Peacekeeper Stage I; current HPM; C-3 Stages I, II, and

III; C-4 Stages I, II, and III; D-5 Stages I and II; and Small ICBM Stage I.

The ablative materials lining the nozzle are of spun PAN (for the inlet rings and

the throat) and lightweight PAN (for the nose cap, stationary shell, and exit

cone). These materials permit attaining the requisite factors of safety without

impacting the external configuration or the expansion ratio.

One of the goals of the Block II SRM design was to produce a thrust time

curve greater than the HPM motor produces, approaching that desired for the

heads-up concept (Figure 8). To increase the performance of the Block II SRM

(Table 6), it was found necessary to increase the maximum expected operating

pressure (MEOP) to 1,129 psia by increasing the burning rate of the propellant

(the nozzle throat is the same as for the HPM motor). With no change in the
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physical dimensionsof the propellant grains,the higher burn rate results in a

shorter motor duration than exhibited in theHPM. Using these approaches, a near

match of the heads-up requirement is attained as shown in Section 3.2.

Table 6. Block II SRM Design Baseline Performance

Parameter

Web Time (sec)

Web Time Average Pressure (psia)

MEOP (psia)

Max Sea Level Thrust (Mlbf)

Vacuum Delivered Specific
Impulse (lbf-sec/lbm)

Burn Rate at 625 psia (in/sec)

Throat Radius (in.)

Initial Expansion Ratio

104.2

727.7

1129.5

3.442

268.16

0.38

26.93

7.720
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3.2 MOTOR PERFORMANCE

This section presents the ballistics and performance characteristics for the

Block II SRM design concepts. The Block II SRM must meet, as a minimum, the

performance requirements documented in CPWI-3600 for the Space Shuttle RSRM.

NASA has also provided an alternate thrust-time trace requirement for a heads-up

flight mode which is estimated to increase Space Shuttle payload capability. The

heads-up requirement was used as a goal for the ballistics of the Block II SRM.

Performance screening was based on changes in Space Shuttle payload

capability resulting from each Block II SRM concept. The relative payload

capability was estimated by a simplified process of adjustment using exchange

ratio constants provided by NASA-MSFC. Space Shuttle payload capability using

the HPM configuration was the basis for comparison. Heads-up design concepts

were credited with a 3,500-1b payload benefit based on previous NASA studies.

3.2.1 TRADE STUDY SUMMARY

Motor ballistics and Space Shuttle payload performance increments were estab-

lished in an iterative process. Initial requirements were allocated for design

trade assessments of major SRM components. As the component design concepts were

developed, their evaluation included establishing the impact on the motor's

performance parameters and resulting implications for vehicle payload capability.

Performance comparisons were among the factors used to arrive at the recommended

component configurations; first by ensuring that the integrated Block II SRM

design would meet specification requirements, and second by providing a dis-

criminator for selection among otherwise equivalent options.

Important component design considerations that were evaluated in performance

assessments included:

Insulation design and material selection - to establish the inert weight of
the asbestos-free insulator and the effect on internal case volume for
displacing propellant or altering burning area-versus-web characteristics.
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Propellant selection - to evaluate propellant density and specific impulse
contributions and determine burn rate characteristics to produce the
required thrust trace, also establish design parameters such as MEOP flow
rates and burn time.

Case design - to determine the weight of the largest component of the
motor's inert weight and to account for changes in propellant loading due to
case thickness or configuration adjustments. (Outside diameter of the case
was unchanged from the HPM configuration.)

Nozzle design - to establish the inert weight of the nozzle and the influ-
ence of nozzle area ratio and material erosion on delivered performance.

Insulation materials that have extensive experience in solid rocket motors

and have been employed in the HPM were selected. The silica-filled NBR and

carbon fiber-filled EPDM contain no asbestos and provide an effective insulator

when configured in a sandwich layup. The insulator design for each motor segment

accounts for the local environment and utilizes the data obtained from previous

HPM flights to confirm that safety factors meet design requirements in all areas.

A slight decrease in insulation weight is projected for the Block II SRM. The

insulator is designed to meet the 1.5 safety factor, and the insulation in the

two center segments is the same to allow interchange of the segments if

necessary.

Four propellants were considered for the Block II SRM design and the two

most promising were evaluated for compliance with both the RSRM thrust require-

ments and the heads-up thrust requirements. For these evaluations the propellant

grain design was not altered from the present design, but propellant burn rate or

nozzle throat size were adjusted to produce the desired thrust trace.

The propellants were:

• TP-H1148

• DL-H396

• TP-H3340

• DL-H397

(86 percent solids, PBAN used in HPM)

(88 percent solids, HTPB similar to Peacekeeper, Stage I)

(89 percent solids, HTPB used in Star 37X)

(88 percent solids, HTPB with low HCI in exhaust)
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All of these propellants appeared satisfactory for meeting the performance

requirements for specification CPWI-3600 (RSRM), but two were eliminated as

candidates during the trade studies. The TP-H3340 formulation was dropped

because of material cost considerations and because of concern with propellant

processing after the formulation was tailored to the higher burn rates required

for the Block II SRM. The "clean" propellant, DL-H397, is being developed in an

ongoing technology program, but was eliminated from consideration because the

formulation is not mature and there is no database for a similar propellant.

The Space Shuttle HPM propellant (TP-H1148) and the HTPB propellant (DL-

H396), which is similar to that used in the Peacekeeper Stage I motor, have an

extensive experience base and can meet the performance needs for a Block II SRM.

These two formulations can be tailored to meet the thrust-time requirements that

duplicate the HPM or that satisfy the heads-up flight scenario.

Motor and vehicle performance were evaluated for various case design

options. Case configurations ranged from the D6ACsegmented case from the RSRM

to new case materials and segment concepts. Nozzle options were also included in

the trade studies to determine the effects of changing from the RSRM configura-

tion to new nozzle designs and new nozzle materials.

The several motor configurations that can be derived from the foregoing

options on insulation, propellant, case, and nozzle were evaluated to determine

feasibility and performance. Two configurations are discussed below because they

bound the possible combinations that were evaluated. Configuration 1 represents

the minimum change from the Shuttle RSRM in terms of component and material

selection. Configuration 2 incorporates more extensive changes in components and

materials to achieve improved performance. Each configuration was selected for

designs to meet the CPWl-3600 thrust-versus-time requirement and for designs to

meet the heads-up thrust-versus-time requirement. Estimated increases in the

Space Shuttle payload capability for these design configuration options are

summarized in Table 7.
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Table

Design A - Heads-
down thrust versus
time

Design B - Heads-
up thrust versus
time

7. Design Configurations Considered

Shuttle Payload Deltas* (lb)

Configuration 1
TP-H1148 Propellant
D6AC Steel Case
HPM Nozzle

Configuration 2
DL-H396 Propellant
MAR-T250 Steel Case
Block II Nozzle

+ 332 + 7,593

+ 2,063 + 9,877**

*Payload deltas based on HPM nominal capability.
**Recommended Block II configuration.

The major characteristics of each configuration are:

Configuration 1. Minimum change to meet thrust requirements with minimized
costs.

TP-H1148 propellant (PBAN)

D6AC segmented steel case

Improved joint design

Nonasbestos insulation (1.5 safety factor)

Configuration 2.

requirements.

Highest performance consistent with thrust and CPWI-3600

DL-H396 propellant (HTPB)

Steel case (four welded segments)

Increased case design strength (T250 maraging steel)

Improved joint design

Nonasbestos insulation (1.5 safety factor)
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Design IA meets all requirements with a small payload gain and minimum cost

impact. This design is essentially the same as the RSRM except for the change in

insulation. A non-asbestos insulation (1.5 safety factor) is used in all the

Block II configurations which decreases insulation weight and volume (allowing an

increase in propellant weight). Design IA with TP-HI148 propellant gives an

increase of 332-1b payload weight for heads-down flight mode compared with the

HPM nominal.

Design IB meets all requirements with payload gain and minimum cost impact.

The increase in burn rate with the TP-HI148 propellant, to meet the heads-up

flight mode requirements, causes an increase of 97 psia in MEOP. As a result,

the D6AC steel case membrane is thickened, causing an increase in inert weight

and a decrease in propellant weight. Design 1B gives an increase of 2,063-1b

payload weight for a heads-up flight mode compared with the HPM and nominal

Shuttle launch mode.

Design 2A uses the DL-H396 propellant. With greater energy (higher solids

content) than the TP-HII48 propellant, an MEOP increase of 19 psia results when

the nozzle throat area is not changed. The T250 maraging steel case exhibits a

significantly decreased inert weight, and a new lighter Block II nozzle is

included. Design IA gives an increase of 7,593-1b payload weight for heads-down

flight mode compared with the HPM nominal.

Design 2B has the highest payload gain and meets heads-up thrust require-

ments. The increase in burn rate with the DL-H396 propellant to meet heads-up

flight mode requirements causes an MEOP increase of 114 psia. Even with the

higher pressures, the T250 maraging steel has improved physical properties and

fewer joints, causing inert weights to go down. Propellant weight and Isp

improve, and the new lighter Block II nozzle is used. Design 2B gives an

increase of 9,877-1b payload weight for a heads-up flight mode compared with the

HPM and nominal Shuttle launch mode.
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3.2.2 ANALYSIS

Performance data were calculated by several means: (1) case design program

evaluated the case weight changes between the D6AC and the MAR T250 steel cases

as MEOP and design strength varied; (2) the Automated Design Program (ADP)

calculated nozzle weights at different pressures, erosion rates, and throat sizes

using thermochemical and ballistics data as the input; and (3) the NASA-Lewis

Thermochemical Program (SDA03) provided thermochemical analysis and, coupled with

a nozzle efficiency analysis, estimated changes in delivered specific impulse

(Isp). Changes in inert weight, propellant weight, and Isp make up the change in

payload (along with heads-up payload increment of 3,500 Ibm) compared with the

HPM nominal configuration. Changes in payload capability were calculated by

means of partials received from NASA-MSFC.

The NASA-Lewis Thermochemistry Program (SDA03) was used to calculate

theoretical rocket performance for equilibrium composition during adiabatic

expansion down the nozzle. An added model, the Hawkins Loss Correlation,

includes these losses in the nozzle:

• 2-Phase

• 2-D

• Kinetic

• Boundary Layer

• Erosion

• Submergence

The reactant composition for the propellants was input into this thermo-

chemical program to calculate ballistic characteristics, erosion rates, and

nozzle losses.

The preliminary ballistics pseudo-steady-state code was modificd to include

the effects of a surface area burn rate error (hump), and pressure transition

down the bore. This was accomplished by modifying the surface area versus web

trace at constant volume for the HPM as shown in Figure 9. This results in

proper pressure versus time history calculations based on actual HPM performance

data.
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Ballistics analyses were completed on the four propellants denoted above.

These propellants were initially analyzed in the heads-down configuration with

the current asbestos-filled insulation. Figure 10 shows how these propellants

compared with the CEI nominal requirements and the HPM with TP-H1148 propellant.

The DL-H397 propellant was eliminated due to immature development for application

in a Block II design. The TP-H3340 propellant was also not accepted because of

its low burn rate and higher ingredient costs. Table 8 presents the ballistic

propulsion characteristics for the TP-H1148 and DL-H396 propellants in heads-

down flight mode. Respective thrust performance traces are shown in Figures 11

and 12. Insulation weights using nonasbestos materials and safety factors were

developed and adjusted surface area versus web trace was incorporated into the

appropriate ballistics analyses.

To increase performance, the heads-up flight mode requirements were con-

sidered and two options evaluated to achieve the higher thrust requirements.

Either the burn rates for the TP-HII48 and DL-H396 propellants were increased or

the nozzle throat diameters were reduced. Iron oxide is added to the propellant

formulations to meet the higher burn rates needed for heads-up thrust require-

ments. The resultant changes in propellant density, specific impulse, and burn

rate slopes were included in the studies.

When the throat diameter is reduced the nozzle expansion ratio increases

which significantly improves the specific impulse for this approach. The

expansion ratio increases because the exit area remains fixed at the HPM geo-

metry. When the throat radius is decreased, MEOP increases more than that

resulting from increased burn rate. This requires a thicker and heavier case

wall resulting in a consistent propellant weight loss. Accordingly, the approach

using increased burning rates offers the most system advantages. For this

selected approach, Table 9 presents the propulsion characteristics for the two

propellants formulated to satisfy the heads-up flight mode.

Figuresl3 and14 show the thrust time trace for Designs IB and 2B, for

heads-up flight. The Design 2B thrust-time trace represents Morton Thiokol's

baseline SRM II design.
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3.2.3 PERFORMANCE

Figure 15 is a representation of the heads-down payload comparison for Designs IA

and 2A. Figure 16 depicts a heads-up payload comparison for Designs IB and 2B.

These figures identify the contribution of inert weight changes, propellant

weight changes, and specific impulse changes to the total estimated payload

increment. Shuttle payload increments were calculated by the use of partials

received from NASA-MSFC which are:

Inert: -0.182-Ibm payload/Ibm inert

Propellant: 0.083-1bm payload/Ibm propellant

Specific Impulse: 800-1bm payload/second Isp

(Partials Per SRM for the Vehicle)

The payload assessments are only meant to provide a measure for relative

comparisons between design concepts since they are not derived by vigorous

methods. In addition to adjusting payload capability to account for changes in

inert weight, propellant weight, and propellant specific impulse, the configura-

tions providing a heads-up thrust-time trace were given the benefit of a 3,500-1b

payload increase attributed to the improved launch trajectory. This assumption

is based on earlier studies for Shuttle heads-up flight that used HPM inert

weights and propellants weights while optimizing the thrust-versus-time require-

ment.

In addition to two different propellants we considered two case designs.

The first case, for Design IA or IB, uses the D6AC steel with ten joints, similar

to the current RSRM configuration except for the improved joint design. The

second case, for Design 2A or 2B, uses T250 maraging steel and has four total

joints. A case design program was used to calculate the case weight changes

between the D6AC and MAR T250 steel cases and these weights were correlated with

the detailed design assessments. The ADP calculated nozzle weights at different

pressures and erosion rates with thermochemical and ballistic data as inputs.

These weights accurately reflect the HPM nozzle actual weights used in Design IA

or IB and agree with the Block II nozzle weights for Design 2A or 2B developed

from detailed evaluation. Those configurations with the higher MEOP pay a cost

in payload reduction due to necessary inert weight increases. For example,

Design 1B provides a payload increase of 2,063 lb. Because of increased inert
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weight, this represents a 1,134-1b payloacl reduction from the previous heads-up

performance studies which assumed HPM weights were held constant.

Tables 10 and 11 summarize the potential performance gain and the contribut-

ing factors for the design configurations discussed in this section.

For increased performance, Design 2B, using a new steel case material,

reduced number of joints, a Block II nozzle, and HTPB propellant, is an attrac-

tive design approach meeting all heads-up requirements. This design offers

significant performance improvements through use of higher performing propellant

and lighter weight, reusable steel cases, and has been selected as the Block II

SRM concept.
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3.3 CASE DESIGN

The objective of the Block II case conceptual design study effort is to provide a

design for a reliable, high-performance ease suitable for the Space Shuttle SRBs.

The definition of an optimal case design requires the selection of concept,

materials, and fabrication techniques that offers the potential to provide relia-

bility and performance gains over the RSRM while satisfying all of the require-

ments of the CEI specification. The Block II case is designed to a head-end MEOP

of 1,100 psig. Trade studies included consideration of composite materials

(Appendix B) and various metal alloys.

The preliminary design trade studies conducted for the Block II case

concluded that a segmented steel case would best meet the reliability, perform-

ance, cost, and reuse requirements. In this section we present the case design

with results of supporting studies and analyses which illustrate the feasibility

of the recommended design concept. The issues of mechanical joint design and

sealing are discussed in Sections 3.4 and 3.5 of this report.

The trade studies conducted for the Block II case focused on selecting

compatible material and processing methods for producing the large-diameter,

thin-wall case segments. High strength steels with good fracture toughness and

high ratio of yield strength-to-ultimate strength are required to meet the relia-

bility, safety, and performance requirements of a reusable rocket motor case.

The combination of material and processing methods selection must be carefully

considered since the large size of the case limits heat treatment and process

selection.

The case design report is the result of optimization of material selection,

process selection, membrane thickness, case segment length, and integration of

aft closure and nozzle fixed housing. The resulting design meets all interface

and performance requirements. Further optimization is possible during the design

phase of the development program. The aft segment stiffener design, to resist

collapse loads during splashdown, must be optimized during the development

program.
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3.3.1 REQUIREMENTS AND SCOPE OF STUDY

Many of the design features of the Block II case are logical extensions of the

SRM, HPM, and RSRM design concepts and criteria. The SRM development and

production programs provide extensive test and analytical procedures to apply to

the design and verification of the Block II case assembly.

The SRM case must provide structural capability for pad loads, motor

operation (including all flight loads), water impact loads, and handling loads.

Further requirements are associated with the interfacing of the SRB and external

tank (ET) components.

Motor operation requires a factor of safety of 1.4 in the material strength

through detailed design using a high strength steel. Case pressurization, SRB

weight and design, ET attachment loads, and flight loads all require detailed

investigation and design to insure proper case performance during the Shuttle

ascent. Case recovery and recycle requirements are established by accounting for

the water penetration, cavity collapse, splashdown, salt water environment,

refurbishment, and handling effects.

The production of a reliable, safe, high-performance SRM necessitates a case

with precise dimensions to allow consistent loading, fitting, and interfacing.

The requirement of 19 reuses produces increased emphasis on cyclic and environ

mental flaw growth. Fracture mechanics is one of the design tools used to assure

the reliable performance of the Shuttle SRM case in connection with reuse.

Table 12 summarizes the basic design requirements for the case.
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Table 12. Design Requirements Criteria

• Factor of Safety
1.4 on ultimate

1.20 on yield
1.25 on ultimate*

1.10 on yield*
• Minimum of 19 reuses.

Before separation
Before separation
After separation
After separation

• Proof test factor will demonstrate the capability for four flights.
• Service life factor of 1 on total life requirement.
• Service life factor of 4 on low cycle fatigue requirements.
• Interface, pad, flight, and splashdown loads.
• Case material resistant to or protected from:

Stress corrosion General corrosion

Hydrogen embrittlement Temper embrittlement
Creep Galvanic corrosion

• Case temperature limit = 400°F maximum (established to prevent damage to
internal insulation to case bond).

*This is a design goal only for water impact loads. Analysis will be conducted
on the effects of water impact loads for the following water entry conditions:

1. Nominal vertical velocity of 85 fps
2. Horizontal velocity of 0 to 45 fps
3. Impact angle of -5 to +5 degrees
Results of these analyses will be evaluated, and the calculated factors of
safety will be the basis of attrition rate determination.

The successful design and production of large, flightweight rocket motor

cases require careful consideration of both material and manufacturing process to

achieve a high reliability design within reasonable facility and economic

constraints. The basic case design is a straightforward application of well-

established, thin-wall pressure vessel membrane analysis methods. The production

design includes selection of forging shapes and sizes that remain within the

available melting and forming capabilities. The full detailed design analyses

for the asymmetric attach and splashdown loads have been deferred to the develop-

ments programs to allow greater emphasis on the joint deflection and integrity

studies in this project. In addition to the basic sizing analyses, preliminary

fracture mechanics analyses were conducted to estimate the service life cycles

obtainable before undetectable flaws would grow to critical size and to estimate

the proof test load that would assure four additional uses. An additional

special requirement of the STS that was considered in detail was the case axial

growth during ignition that is limited to insure safe level dynamic loading for
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the STS. This criterion restricts the design of composite cases and may even

have restricted the strength utilization of a high-performance steel.

3.3.2 CASE DESIGN DESCRIPTION

The Block II SRM case is fabricated from 18 percent nickel, titanium-strength-

ened, 250 grade maraging steel in a segmented configuration. The segment concept

consists of an aft closure with integral nozzle fixed housing, a stiffened aft

cylindrical segment with ET attach provision, two cylindrical segments and a

forward segment as shown schematically in Figurel7. Block II tang and clevis

joints allow field assembly while girth welds join shear formed cylinders into

casting segments.

High-strength (250 ksi), 18 percent nickel, titanium-strengthened maraging

steel (MAR-T250) was selected for the Block II case development because of its

higher yield and ultimate strengths with the same fracture toughness as the D6AC

low alloy steel that has been proven successful in the HPM cases. The maraging

steel develops its full strength by a solution annealing and aging process which

offers potential for improved consistency over the quench and temper processes

for low alloy steels.

The 146-in.-diameter, ll6-ft-long case is made up from 12 forgings joined by

girth welds into four segments and an aft closure which includes the nozzle fixed

housing. These segments are joined with tang and clevis joints at final as-

sembly. The aft closure-to-aft segment joint (the nozzle-to-case joint) is

assembled prior to shipment from Wasatch Operations. The other three field

joints are assembled at the launch site.

The forward segment consists of two cylindrical segments and a 1.6:1

elliptical dome. Two cylindrical segments are required due to the limitations on

the length of the present shear-forming equipment. The forward dome will be

forged and machined from a pancake billet and will include the forward stub skirt

and the flange for the ignition system attachment. The aft closure will be

assembled from two ring rolled forgings with a girth weld near the ring which

reinforces the cone-to-sphere transition. The cone and reinforcement ring may be

combined in one forging. This closure interfaces with the aft segment with a
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clevis joint and interfaces with the aft end ring of the nozzle flex seal with a

face-sealed bolted joint. The cylindrical segments are fabricated by girth

welding two cylindrical shear-formed segments, heat-treating the assembly, and

finish machining the tang and clevis details. The aft segment is fabricated by

girth welding three shear-formed cylinders which include rolled-in buildups for

ET and stiffening ring attachments. The ET attach stub rings will be machined

from a thickened region of the cylinder, but the stiffening ring stubs may be

welded to buildups on the case.

The case membrane thickness design follows the high performance motor design

with 1.07 biaxial improvement and 90 percent of the predicted pressure drop down

the length of the motor. In addition to the minimum membrane thickness we

include 0.020 in. for shear forming tolerance and 0.009 for refurbishment

material removal to obtain the nominal wall thickness. For the MAR-T250 alloy

the ultimate strength criteria (with the 1.4 factor of safety) govern the design

size. The yield criteria with a factor of safety of 1.2 is satisfied when the

ultimate criteria are satisfied.

3.3.3 MATERIAL SELECTION

An objective of this study was to identify the most promising material candidates

for the development of a highly reliable, improved-performance solid rocket motor

case. Initially, we considered carbon fiber composite cases as well as those

fabricated of high strength steels. Our studies concerning the composite

materials are included in Appendix B. The result of these studies showed the

composite case to offer good performance advantages, but reliability respective

to component reuse had not been demonstrated. Until this technology is

developed, the preferable SRM case material is one of the high strength steels.

Candidate steel case materials were compared on strength, fracture tough-

ness, experience, process effects, and cost. To maintain the booster perform-

ance, only steels with ultimate tensile strength equal to or greater than the

present D6AC steel were considered. To maintain reliability, only materials with

fracture toughness equal to or better than the present D6AC are admissible. The

steels that survive shear forming operations must be substantially inclusion and

defect free. Consequently, the process of shear forming provides an effective
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defect detection and billet rejection criterion early in the processing of every

case component. The combined costs of both raw material and fabrication pro-

cesses must be considered to provide an equitable basis to select the most cost-

effective approach.

Based on all considerations, 18 percent nickel, titanium-strengthened, 250

grade maraging steel was selected as the case material with the low-alloy D6AC

steel as a more mature backup. The primary factors and data summary for compar-

ing the candidate materials are presented in Table 13. The maraging steel

offers the advantages of higher yield and ultimate strength(1,2) with the same

fracture toughness as the alternative D6AC steel.(3) The titanium-

strengthened maraging steels were first introduced in 1981. These alloys use no

cobalt and consequently can be expected to remain available and nonvolatile in

cost. The comparative youth of the MAR-T250 steel leaves the database less

developed than the D6AC steel database. This will require completion of the

detailed characterization testing and evaluation as a key element of the Block II

design substantiation.

The extensive material trade studies conducted for the original SRM develop-

ment (4) identified two good candidate materials as a baseline and alternate.

D6AC, a low-alloy steel, and MAR-200, an 18 percent nickel maraging steel, were

closely compared. The primary discriminators in that decision were cost, cost

and schedule credibility, and performance. The ultimate strengths were about

equal but the MAR-200 steel's fracture toughness exceeded that of D6AC steel.

The D6AC steel case was expected to be 10-15 percent cheaper than the MAR-200

steel case and that material had a slightly broader experience base which was

seen to support the credibility of the cost and schedule estimates.

1product Information Sheet, "VascoMax ® T-250," Teledyne Vasco,

Latrobe, Pennsylvania, 1982.

2product Information Sheet, "VascoMax ® T-200/T-250/T-300," Teledyne Vasco,

Latrobe, Pennsylvania, 1985.

3TWR-10891, "Mechanical Properties of D6AC Steel As Used on the SRM Program,"
20 February 1976, R. H. Gercke.

4TWP-077326, "Design, Development, and Verification for Solid Rocket Project

for the Space Shuttle Program," 27 August 1973.
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The maraging steel of that time (MAR-C200) required the strategic material

cobalt as an alloying element. The limited supply and consequent volatility of

the cost and availability were judged to unfavorably degrade the cost and

schedule credibility in the long term Space Shuttle program. In 1981, titanium-

strengthened grades of maraging steel were introduced. These steels have

properties as good as or slightly better than the cobalt-strengthened grades

introduced in the 1960s. With the removal of cobalt, the cost and availability

of these new maraging steels are expected to be stable. This removes the

strategic material cost and supply risk.

The D6AC material meets the essential requirements of the Shuttle system.

It has proven adequate to meet the strength and toughness requirements so

essential for the reusable cases. The specified heat treatment was selected by

carefully balancing the fracture toughness gain against the ultimate strength

reduction. (4) This requires close tolerances on the critical quench and temper

processes.

The age hardening steels achieve the strength and toughness characteristics

through the less complex process of solution treating and aging. Since they are

practically carbon free, no protective atmosphere is necessary during their heat

treatment. The MAR-T250 alloy offers the opportunity for a 25 percent increase

in ultimate strength, a 33 percent increase in yield strength, and no loss in

fracture toughness when compared to the D6AC material. Other advantages of the

MAR-T250 steel are gained by the removal of the critical quench and temper

process. Since no slack quench problems are encountered, heat treatment of full

segment length cases may be accomplished. This allows the development of high-

reliability automated welding processes. Properly welded and aged maraging steel

will exhibit weld efficiencies close to 100 percent with fracture toughness

similar to the parent material. (A 90 percent weld efficiency was assumed for

preliminary analysis.) Welding does not require preheat or postheat treatment

and allows full strength development through re-solution annealing and aging.

Compared to the critical quench and temper of the D6AC material, the solution

anneal and age hardening offers potential for reduced variation of finished part

properties which translates into less performance penalty to allow for random

variation of material strength.
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The raw material cost for the maraging steel is currently three to four

times the cost of the low-alloy D6AC steel. The baseline design will offset this

cost increase by using a simpler heat treatment process and by minimizing the

precision machining operations with the reduction of the number of mechanical

joints. Further cost reductions may be encountered because of the potential to

develop and qualify welding procedures for the repair of segments damaged during

their service life of 20 flights and the associated handling operations.

3.3.4 CASE FABRICATION TRADES

Three different fabrication approaches were considered in deciding the primary

approach to build the Block II SRM metallic case. These approaches are: (1)

nonwelded segmented (existing method); (2) roll and welded cylinder; and (3)

shear-formed cylinders assembled with girth welds into casting length segments.

Table 14 summarizes the advantages and disadvantages of each. The roll and

weld approach was ruled out due to the longitudinal welds which are fully

stressed by the cylinder hoop stresses. Removal of the six factory joints of the

HPM case offers substantial performance gains over the existing fabrication

approach. Welding of the proposed MAR-T250 steel is a less complex process than

for the D6AC steel. It requires no preheating or postheating and nearly 100

percent efficiency is achieved by re-solution annealing and aging. The recom-

mended fabrication sequence is:

• Prepare VIM-VAR ingot
• Upset and punch forging
• Hot roll ring forging
• Solution anneal

• Shear forming operation
• Rough machine
• Perform girth welds
• Solution anneal

• Heat treat (age)
• Final machine

Figure 18 shows the proposed buildup in the girth weld area which has a 10

percent thicker section for the welds to allow for mismatch, any reductions in

KIC, or reductions in strength due to welding. The proposed welding technique is

3-48



I::
0

3-49



O_
r-

,F

(n u)

r- L.
I "- -o >-

r- _j:

m :3 r- -_

= :_°°®
0 0 _) (_

_ _'_ _ _

, m 0 C
, (_ V) 0

_J

0

_._

,._
_-_

.r-t

o_

3-50



gas tungsten arc which has argon gas shielding and stringent controls on filler

wire cleanliness. Also, plasma arc welding should be investigated as a lower

cost (time) alternate during development.

3.3.5 PRELIMINARY ANALYSES

3.3.5.1 Case Membrane Design

The case membrane region thicknesses were selected to satisfy the design criteria

listed in Tablel5. The design pressure for each segment is based on the

criteria used for the HPM case stress analysis.(5) This allows varying the

segment MEOP to account for the pressure drop along the length of the motor at

the time of maximum headend pressure. The Block II design used 90 percent of the

calculated pressure drop for conservative sizing of the membrane thickness. The

design pressure, nominal thickness, and girth weld reinforcement thickness are

listed for each cylindrical case segment in Table 16. The nominal thickness

includes a dimensional tolerance of +0.020 in. and a refurbishment allowance

0.009 in. to allow for grit blast material loss during the 19 reuses of the case.

of

Table 15. Block II Case Membrane Design Criteria

Material: i8 Percent Ni Maraging Steel MAR-T250
Specified Minimum Properties

FTU -- 250 ksi
FTy = 240 ksi
E = 27 msi

Design Factors

Biaxial Improvement (2:1 stress field) = 1.07
Factor of Safety -- 1.4

Nominal Case Outer Diameter = 146.076 in.
Maximum Case Outer Diameter = 146.146 in.

5S. R. Stein, "Space Shuttle HPM SRM Case Analysis," TWR-12968, Rev. A, January
1983.
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Table 16. Block II Case Cylinders Design Summary

Segment

Weld

Nominal Nominal Reinforcement
MEOP Membrane Thickness

___ Thickness ........... _(J_0_ _ .

Forward 1,100 0.447 0.492
Center 1,038 0.424 0.467
Center 1,021 0.424* 0.467
Aft 1,005 0.411 0.453
Aft Closure 1,019 0.418 0.460

*Not minimum to allow full interchange of center segments

The forward dome membrane thickness was sized originally to provide uniform

membrane stress throughout the 1.6:1 ellipse. For the Block II design

the tabulated thicknesses were scaled to account for the increase in MEOP and for

the increase of strength of the material. A conservative factor of 0.901 was

used.

The aft dome membrane is a spherical shell with tapered reinforcements to

manage the discontinuity stresses resulting from the cylinder and Y-joint

transition and from the nozzle fixed housing cone to sphere transition. Axisym-

metric finite element models were used to design appropriate tapers and to select

the 0.309-in. required membrane thickness to assure a 1.4 factor of safety with

minimum strength and thickness. The arc length of the shell is short enough that

the effects of the discontinuity stresses are visible over its entire length.

The aft closure includes the nozzle fixed housing and a reinforcement ring

which reduce the discontinuity stresses at the cone-to-sphere transition. The

conical region of the aft closure is in a compressive axial and circumferential

stress state and is consequently subject to failure by buckling before failure by

general yield or rupture. The buckling factor of safety for conservative
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combination of bending moment from nozzle vectoring, chamber pressure and an

axial load resulting from proof test closure axial loading was 1.92 using the

referenced methods. (6,7)

3.3.5.2 Fracture Mechanics Analysis

A preliminary fracture analysis was conducted on the Block II SRM proposed

design. This analysis was performed to determine:

° If hardware meets four times crack growth expected in one service life
uses).

2. If proof test can ensure four additional uses.

(20

The approach used was the same approach defined for the HPM(8) which

utilizes the Collipriest-Ehret equation:

I In Kc - In AK0

da _ exp n• • arctanh
dN 2

2

f
+In t C exp t"" 2 n)JJ

da/dN

f In[K c(1-R)] + InAK 0 J

In AK- 2

In [Kc(1 -r)]- InAK 0

= Crack growth due to fatigue cycling (inches growth/stress cycle)

n = Paris equation exponent

C = Paris equation coefficient

A K O = Threshold stress intensity range for growth (ksi

K c = Stress intensity for fracture -- KIC at the temperature of
interest (ksi ff-i-_.

6Roark, Formulas for Stress and Strain, 5th Edition.

7ANS, Rockwell Structures Manual, p. 9.23.08.

gR. M. McCaskey, "Fracture Control Plan for Space Shuttle SRM High
Motor Case," TWR-13236, December 1981.

Performance
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The input variables are:

R = Load ratio (Pmin/Pmax) = 0 (normally)

A K = Cyclic stress intensity range of interest (ksi

Assuming a minimum detectable flaw size by NDI of 2a o = 0.100

using a nominal KIC of 95,000 psi _ and material constants for 18

maraging steel, (9) the analysis indicated that the design would survive greater

than 250 life cycles. Crack depth and critical crack size after 250 cycles were

0.1071 and 0.1217 in., respectively. Further analysis (10) determined that a

proof test factor of 1.08 will ensure a minimum of six reuses.

in., and

percent Ni

The MAR-T250 material appears to be acceptable from a fracture mechanics

aspect pending more detailed design and material evaluations which would be

conducted during the Block II SRM development stage.

3.3.5.3 Case Axial Growth Study

Axial growth of the SRB is constrained to 0.9 in. for a metallic chamber. The

proposed design will meet this requirement although the MEOP has increased. The

selected material has a higher strength and lower elastic modulus (which suggests

higher strain at pressure). These lead toward an expectation that the pres-

surized case axial growth would constrain the design. The proposed case elimin-

ates six joints and uses a material with a higher Poisson's ratio. These

attributes lead toward the expectation of reduced axial growth. With these

changes, a detailed analysis was required to sum the offsetting effects while

recognizing that the growth requirement is less than one part in 1,300.

The growth study used the conventional membrane equations and accounted for

the variation of pressure (Figure 19) and axial load (Figure 20) along the

9R. H. Gercke and R. F. Zeigler, "Final Report: Space Shuttle SRM Case Materials

Study, Project Numbers 93219 and W3219," IT-T7-17-699, December 1973.

10R. M. McCaskey, "Revised Proof Pressures for Space Shuttle SRM High Performance

Motor Case, TWR-13695, 21 February 1983.

3-54



--IJ.
o
_D
P_

.o
C

<

C
0
U

_D
0

__.

0

/

/

O I.O C3 I_ O
00 N O I_ in
03 03 O_ CO 00

I !

_..- oo
Z e- _D

7

o
o
o

o
o
03

o
o
G0

O
o

o
O
r,D

O
O
LD

in o in o

GO CO r_ r_

(6!sd) emsse, d

=
0

°_
4J

°r-I

4.J

.r-I

OJ

U)

o_

_J

.p(

3-55



¢.1

°_

j,
o°

_D

c_

t-
o

om
4_

E

8
I

I
I

N 0 O0
O0 t_ N

I
I
I
I
I

I

f

/ ,-

/
P

0
0
0

0
0

0
0

0
0

0
0
cO

0
0

IN c'_

J :

/°

o

/°
m

I

i

, I
I I

CN IN

v

0 _

x
< .-_ "5

u."_

._'5
u.'-_

o
c_

o

c_
o

b0
.r-I

(O00L x "u!/ql) peo-I eU!'l

3-56



length of the SRB. A loaded motor static test analysis (11) at 0.6 sec after

ignition analytically compares axial growth in static test to the flight axial

growth with a 1.6-g acceleration. The significant result of that analysis is

the variation of the axial membrane load along the case shown in Figure 20. The

"scalloping" of the load within a segment is due to the sharing of the axial load

with the grain through a simple shear lag mechanism. The difference in axial

membrane load from the grain inertia loading is also illustrated in this figure.

The effect of the thrust compression is offset by the inertial load of the grain

on the case. The greatest difference is about 15 percent in the forward segment.

One effect of the case membrane loading is the change of length in the case.

This is evaluated using a conventional pressure vessel membrane design approach.

Starting from the equilibrium line loads, geometry, and material properties, the

axial and radial growth of uniformly loaded cylinders are:

L
AL = _ (N 1 vN 2) (1)

Et

R
AR = __ (N 2 vN 1) (2)

Et

Where: AL =

AR =

L =

R =

E =

p =

t =

N 1 =

N 2 =

Cylindrical membrane length change

Cylindrical membrane radius change

Initial cylinder length

Initial cylinder radius

Elastic modulus of case material

Poisson's ratio for case material

Membrane thickness

Axial line load

Circumferential line load

11G. L. Hurst, "Space Shuttle SRB Axial Growth Comparison Static Fire Configura-
tion vs Flight Simulation," 21 July 1986.
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Note how the length change depends on both the axial and circumferential

loading through the Poisson's ratio term in equation (1). Since the hoop load is

typically two to three times the axial load in a rocket motor chamber (compared

with a closed tank where the load ratio is 2:1), the axial length change must

always include the biaxial effects. The fact that the N2/N 1 ratio is two for a

closed tank leads to the observation that the length growth will be significantly

influenced by the Poisson's ratio. In a rocket motor where N2/N 1 is greater than

2, the influence of the Poisson's ratio is greater than in a closed tank. For

example, at N2/N 1 -- 3 then a Poisson's ratio of 1/3 would result in zero elonga-

tion of the case. Similarly, when a closed tank is examined, zero elongation

would only be obtained when Poisson's ratio is 1/2.

The D6AC material has a Poisson's ratio of 0.286 while the Block II MAR-

T250 steel has a Poisson's ratio of 0.31. These data are very important in

meeting the length growth requirement because the working stress will be in-

creased and the modulus decreased, which will amplify strains by about 35

percent. The increase of Poisson's ratio of 8 percent with the 2.5:1 typical

load ratio in the Space Shuttle static test motor gives a 22 percent reduction in

displacement that adds to the 25 percent reduction due to the joint elimination

to predict an expected net 17 percent reduction of AL for the Block II SRM.

Without the change of material the axial growth would be slightly less than in

the RSRM because of the larger pin size and the joint stress reduction. The

membrane deflection would not change because the working stress does not change.

Consequently, the axial growth of the D6AC steel case at the Block II MEOP would

be a few percent less than the axial growth of the RSRM.

The important conclusion of this evaluation is that the Block II case and

alternate designs will exhibit less axial growth than the current HPM.

3.3.6 ALTERNATE DESIGN SELECTIONS

As backup design options to the key features of the recommended design, D6AC

steel is recommended in a segmented case. Also recommended is to retain the
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segment lengths of the HPM case with mechanically joined case segments forming

the casting segments. The backup design provides proven materials and fabrica-

tion methods but reduces the structural efficiency.

In addition to the backup design alternates, a concept is presented to

integrate the skirt attach ring into the case design with a bolted, face-sealed,

aft case segment-to-aft closure joint.

3.3.6.1 Material Backup

As a conservative backup, the D6AC steel can be used for the Block II case. The

low-alloy case would be substantially heavier than the MAR-T250 steel because the

case segment length would be limited by the quench requirements. The higher MEOP

of the Block II design would cause the case weight to increase by about 10

percent over the HPM case, or increase by about 20 percent over the Block II

baseline. The D6AC case would retain the weld-free ease design of the HPM and

would require using the bolted fixed housing-to-case aft closure.

3.3.6.2 Inteeral Kick Rin_. Skirt Attach, And Case Joint

One concept that emerged during the Block II study was the possibility of

combining the functions of the kick ring, skirt attach ring, and case-to-dome

joint into a single design feature of the case. The present configuration is

compared to the proposed concept in Figure21. Analysis results for this

integrated joint are shown in Figure 22.

This design shows merit over the Block II baseline but does not conform to

the interface requirements of the CEI specification. Since this involves

components that are beyond the range of the case assembly it is simply presented

as a feasible idea, but will not become a part of the Block II case without the

coordination of the MSFC.
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3.4 JOINT DESIGN

Development of a capable and reliable segmented SRM design revolves around the

ability to design an intersegment joint insensitive to flight loading and

environments. Pursuant to this goal a variety of case field joints were evalua-

ted. Of these designs, four designs were determined to have sufficient merit for

detailed consideration (Figure 23). These four designs include:

a°

b.

c.

d°

Double-recess bolted ioint (originally developed by NASA Langley
Research Center). This joint features face seals in a bolted
configuration. The joint is offset from the membrane line of action to
insure that all seal gaps remain closed.

Inclined bolted ioint. A bolted joint which incorporates both face and
bore seals.

Single-recess bolted ioint. This joint has all the advantages of the
double-recess bolted joint plus the added advantage of higher struc-
tural margins of safety.

Modified pin-clevis ioint (hereafter referred to as Block II clevis

joint). Though similar to the RSRM configuration, there are two
important improvements. One, the joint is sized to use larger diameter
pins resulting in reduced stresses/strains around the pin holes. Two,

the joint is offset from the membrane line of action resulting in a
reduction of seal gap growth. For elimination of seal gap growth the
filament wound overwrap was included in the comparison as a modifica-
tion to the Block II clevis joint.

Each joint was sized using 2-D axisymmetric analyses and assuming an MEOP of

1,100 psi and material properties for MAR-T250 steel. The joints were traded

based on the following criteria:

a. Seal performance (gap growth under pressurization and flight loads)

b. Structural adequacy

c. Motor performance based on internal volume changes and inert weight
effects

d. Ability to manufacture and assemble

Analyses results showed that all Block II joint designs control seal gap

growth within acceptable limits (see Table 17). Analysis of the Block II clevis

joint predicts better seal gap performance than currently attained by the RSRM

baseline joint. Studies by the SRM redesign team indicate that the clevis seal
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Double Recess Bolted

Inclined Bolted

Single Recess Bolted

r 1 [ 1

I
Block II SRM Clevis
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Figure 23. Case Field Joint Concepts
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gap opening could be completely eliminated in this joint by the addition of

overwrap stiffeners. Both the single- and double-recess bolted joint face seals

remain closed under pressure loads. The bore seal gaps of the inclined bolted

joint open under pressure loads, but less than the RSRM baseline joint, while the

face seal gap remains closed.

The structural adequacy of each joint was determined by using 2-D axisym-

metric finite element analysis. Margins of safety are based on the maximum

normal stress theory. Of all the considered joints, the Block II clevis joint is

the most efficient and predictable. This joint demonstrates good margins of

safety and yet is the lightest of the joints considered. The single-recess

bolted joint also demonstrates good margins of safety but is the heaviest of the

joints. Analysis of both the double-recess and inclined bolted joints predicts

high levels of stress while the joints are relatively heavy.

The effect of each joint on the motor's performance was evaluated based on

the increase in inert weight over a continuous cylinder weight and the displaced

volume of propellant. It is noted that less propellant is displaced at the field

joint locations than at the factory joint locations. This is less true for the

recessed bolt designs because of the increased length of the joint. A perform-

ance penalty for both inert weight gain and propellant displaced is calculated

using the following heads-up exchange ratios:

• -0.182-Ibm payload/Ibm inert case.

• 0.083 Ibm payload/Ibm propellant

The weight/performance penalty is compared on a per joint basis (see Table 17).

The Block II clevis joint provides the lowest payload reduction or highest

performance _vith the inert weight being the most significant factor.

Manufacturing and assembly procedures appear to be much more simple and

predictable for the Block II clevis joint than for the bolted joints. The bolted

joint designs will be difficult to assemble, particularly in the horizontal

position which is required for motor static testing because the face seals will
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be extremely difficult to keep in position. The vertical assembly and breakover

for static test is not within current facility capability nor has this been

demonstrated.

Based on performance, structural integrity, and ease of manufacturing and

assembly, the Block II clevis joint is preferred over the bolted configurations.

Since the Block II clevis joint proposes a capture feature seal which always

remains in contact, and two backup seals that are predictable in their response,

sealing reliability is fully assured. For these reasons, the Block II clevis

joint is selected as the proposed Block II SRM joint with either the single-

recessed bolted joint or the Block II clevis joint with overwrap stiffeners as

favorable alternatives.

Of the nozzle fixed housing-to-aft dome joints that were studied, a welded

joint option was finally selected as the proposed baseline for the Block II SRM

(Figure 24). The use of a welded fixed housing-to-aft dome joint presupposes the

existence of a factory assembled joint at the case cylinder-to-aft dome junction.

The proposed alternative joint is the bolted concept featuring an interference

sealing surface, ensuring no initial seal gap. It also has a capture feature to

minimize the seal gap growth and to prevent sudden gap deflections or skip.

The igniter attachment and seal provisions are described in Section 3.10.

3.4.1 OBJECTIVE/SCOPE

The primary objective of this study was to determine a case joint design, for a

segmented Block II SRM design, which would be insensitive to flight loading and

environments, and maintain its structural and seal integrity.

To find the optimum joint, a variety of joint configurations were con-

sidered. These joints were evaluated based on attributes related to:

a.

b.

C.

d.

Redundant and verifiable seals

Seal gap control

Structural capability

Producibility
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e.

f.

g.

h.

i.

Reuse potential

Assembly ease and leak check verification (checking two seals in the

sealing direction)

Handling ease

Performance

Cost

Four designs, as discussed earlier, were selected for detailed studies.

These joint designs were sized based on the MAR-T250 steel case material

properties using hand analyses. Detailed 2-D axisymmetric finite element

analyses were performed on each joint configuration to predict deflections and

stress levels under combined pressure and axial loading. An internal pressure of

1,100 psi, and an axial load of Pr/2 lb/in, was applied to each model. Bolted

joint models included a bolt preload of 60 percent of the bolt tensile capacity.

Twenty inches of cylinder were modeled on either side of the joint buildup to

dampen out the discontinuity bending. An effort was made to optimize each of the

joints analyzed. Subsequent to joint optimization each joint was evaluated on

motor performance loss.

3.4.2 BLOCK II CLEVIS JOINT

Design of a clevis type joint for Block II SRM centered around improving the RSRM

clevis joint without requiring the design to mate with existing hardware. Some

design changes were required to meet the increased Block II performance require-

ments, specifically an increase of MEOP from 1,004 to 1,100 psi. The design

goals of the Block II clevis joint were as follows:

Demonstrate better margins of safety at 1,100 psi than the RSRM joint

at 1,004 psi

Reduce plastic deformation in the joint pinhole regions

Minimize the seal gap response

Structural predictions were determined using 2-D axisymmetric linear finite

element analysis. Previous experience of the SRM redesign team verifies this

type of analysis will give good gap predictions. The trends in stress and strain

predictions will accurately be depicted and are sufficient for comparative
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studies. However, because the joint is not axisymmetrie, precise predictions of

stress and strain in the pinhole regions can only be obtained using 3-D nonlinear

finite element techniques.

Structural analysis of the Block II clevis joint predicts higher margins of

safety than predicted in the RSRM joint. Increasing the thicknesses of the

clevis legs and the tang resulted in lower stress predictions (see Table 18).

Stresses were further reduced by increasing the pin diameter to 1.125-inch. In

spite of the increase in MEOP (1,004 to 1,100 psi), the stresses are less than

those experienced by the RSRM clevis joint. The plastic action currently

observed in the existing HPM hardware will also be reduced by the reduction in

stress and also by trading the current material (D6AC) for a higher strength

material (MAR-T250) with a 33 percent higher yield strength. The Block II joint

stresses at 1,100 psig are shown in Figure 25. The comparison of pin stresses

between the RSRM and the Block II joint configuration are also shown in this

figure.

Seal gap opening is minimized by offsetting the joint inward from the

membrane line of action by 0.25 inch. Most of the gap deflection is due to

bending at the joint under pressure loads. Offsetting the joint creates an

opposite bending effect under axial tension loads, thus reducing the gap opening.

Predicted clevis seal gap openings of 0.0059 and 0.0060 in. at 1,100 psi are

smaller than 0.0067 and 0.0091 in. for the RSRM design at 1,004 psi. The capture

feature seal remains closed for all pressure loads. The differences between the

RSRM and the Block II clevis are illustrated in Figure 26. The joint offset can

be seen more clearly in Figure25where the dashed line indicates the membrane

line of action.

A parametric study was performed to find the optimal joint offset using a

preliminary Block II joint design. The results of this study, which are summa-

rized in Table 19, indicate that gap opening is reduced as the joint is moved

inward. Too much inward offset begins to cause stress problems and thus

limits the amount of offset that can practically be enforced. An offset of 0.25

in. produces good reductions in both the gap opening and stress values; there-

fore, this amount of offset was incorporated in the Block II clevis joint.

e.AGE _" _0 INIENIIONALLY BLANK
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87354-17.1

Table 18. Block II Clevis Joint Stress Study

Increase
Critical Stresses (ksi)

in Inner

Clevis Leg
Thickness

Max Max Max Max

Max Axial Axial Axial Hoop

Eff (tang) (clevis) (pin) (tang)

RSRM*

0.00 (in.) 162.4 141.1 138.9 190.1 121.4

Preliminary
Block II*

0.00 (in.) 176.5 134.5 161.0 135.6 113.2

0.06 158.6 125.8 140.1 136.4 112.9

0.12 143.1 124.3 121.7 132.7 112.9

Baseline
Block II**

0.12 (in.) 130.0 110.2 95.6 123.1 117.2

*Assumed 1,004 psi internal pressure

**Assumed 1,100 psi internal pressure

Table 19. Block 11 Clevis Joint Offset Study

Gap Opening at

Line of First Second Critical Pin Stress

Action Clevis Clevis Stress Ratio***

Offset Seal Seal Max SIGE'(ksi) Outer/Inner

RSRM* 0.0067 0.0091 162.4 0.62

Preliminary
Block II*

0.00 0.0060 0.0063 143.1 0.56

0.25 0.0054 0.0055 123.4 0.69

0.50 0.0050 0.0052 154.1 0.70

Baseline
BLock II**

0.25 0.0059 0.0060 130.0 0.72

*Assumed 1,004 psi internal pressure

**Assumed 1,100 psi internal pressure

***A ratio of 1.0 indicates balanced pin

'Yon Mises equivalent stress
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Important advantages of the clevis joir]t concept include: 1) ease of

manufacturing, 2) ease of assembly, and 3) reusability. Each of these advan-

tages has been demonstrated in current Shuttle hardware. Joint dimensions can be

turned to within very tight tolerances. Assembly in both vertical and horizontal

configurations is made easy since the clevis is a natural guide for the tang.

Reusability of a clevis/tang joint has been demonstrated via tests and actual

refurbishment of SRM flight hardware. The improvements proposed in the Block II

clevis joint preserve these advantages and further increase the reusability of

the hardware.

In summary, the proposed Block II clevis joint is a more robust version of

the RSRM design. Joint dimensions are strategically increased and a higher

strength steel is specified. The joint is offset from the membrane line of

action to reduce the gap openings. The joint has improved structural safety

factors and seal gap control while servicing 10 percent higher pressure loads.

Based on its high degree of structural integrity, reliable sealing mechan-

ism, and acceptable weight increase the Block II clevis joint design is recom-

mended as the baseline for the Block II SRM.

Optional Overwrap Stiffeners. An overwrap stiffener concept has been studied

which, when added to a clevis/tang joint, will effectively prevent gap growth

under pressure loads. Because the bore seal surfaces generally have an initial

gap, the intent of the overwrap is to prevent that gap from changing throughout

the entire operating pressure range. This technology, though developed on the

HPM and RSRM clevis joints, applies directly to the proposed Block II clevis

joint as well.

Stiffeners are typically made of composite material rather than steel

because of the composite stiffness to-weight-ratio. The composite stiffener can

be wound directly onto the case or fastened as a removable bolt-on feature.

Overwrap test results from the RSRM redesign effort successfully demonstrated the

effectiveness of this concept (Figure 27).
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The main disadvantage of using overwraps with the clevis joint is the

substantial weight/performance penalty (see Table 17). The combined clevis with

overwraps suffers the greatest performance reduction of all the joint designs

considered.

In light of these studies, the proposed Block II clevis joint combined with

overwraps would make a very predictable alternative design. Aside from the

weight/performance penalty, all of the advantages of the clevis joint are

preserved. Should design limitations require that all seal gaps remain neutral

during pressurization, then this joint configuration should be considered as an

alternative design.

3.4.3 DOUBLE-RECESS BOLTED JOINT

The double-recess bolted joint is a unique bolted joint originally proposed by

personnel from NASA-Langley. Two face seals are used to achieve redundant and

verifiable sealing. Both mating halves of the joint have clearance bolt holes.

Joining is achieved with one-hundred forty-four 1.129-in.-diameter MP35N studs

inserted through the clearance holes with nuts installed on both ends (Figure 28).

The strength of this design is clearly the predictability of the face seal

concept. Milled recesses move the bolt circle to a smaller diameter than the

membrane line of action. This offset introduces a moment due to line load which

offsets the moment due to pressure and hoop discontinuity at the joint. The

result is that seal gap surfaces, which are initially in contact, remain in

contact for all pressurization loads.

The sealing concept is the major advantage of this design. Structurally,

this design transfers all loads through the bolts as axial stress. From a

failure standpoint it is generally better to transfer loads through bolts in

shear, as in the clevis joint. Block II studies indicated high stresses in the

webs between recesses, in the bolts, and high hoop stresses in the flanges

containing the clearance bolt holes. Note that the seal gap remains closed under

pressure. The 146.8-ksi hoop stress in the flange does not reflect the stress

concentration effects around the holes since this is only a two-dimensional

analyses. However, a stress concentration factor of about 2.0 is typical around
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this type of hole. Detailed studies conducted by NASA-Langley indicate that the

web stresses and bolt stresses can be reduced to acceptable levels; however,

their analyses still show the high flange hoop stresses and subsequent stress

concentrations around the holes. Stresses in the flange could be reduced by

increasing flange thickness but this both reduces bolt stiffness and increases

joint hoop discontinuity. Both of these would tend to increase joint opening.

It has not yet been determined how this joint would successfully be as-

sembled, particularly in the horizontal position. It appears difficult because

loaded case segments will not be round in a horizontal position and the forces

required to mate two segments can be a problem. There is no obvious method for

joining two segments, a process which is inherently simple with the clevis/tang

concept. The handling and assembly of segments with this joint would be diffi-

cult.

Due to the milled recess at each bolt hole, this joint is more difficult to

manufacture than the clevis/tang joint. This joint also suffers from relatively

high inert weight, thus reducing the overall motor performance (Table 17).

In summary, the double-recess bolted joint should have predictable seal gap

response; however, it poses structural, manufacturing, and handling problems that

the clevis joint does not have. A much more detailed study of this joint is

required before it can be properly developed as an alternative Block II design

concept.

3.4.4 SINGLE-RECESS BOLTED JOINT

The single-recess bolted joint (Figure 29) is a variation of the double-recess

bolted joint which mates a clearance hole on the top segment with a tapped hole

on the bottom segment. One-hundred forty-four 1.25-in.-diameter MP35N bolts are

used to secure the segments. This joint is the heaviest of the four joints

studied in detail but displaces half as much propellant as the double-recessed

design. The design has two face seals to meet the redundant and verifiable seal

requirement. The seals are located on two different sealing surfaces to preclude

the probability that one flaw on either joint surface could cross both seals.
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Though similar to the double-recess bolted joint, the single-recess design

performs better structurally because of the increase in material resulting in

reduced hoop stress. Analysis results are summarized in Figure 29. All factors

of safety are well above the required 1.40, including the bolt factors of safety.

The offset of the bolt line from the membrane line of action prevents seal

gaps from opening under pressure. Sealing attributes are similar to those of the

double-recess joint. Basic hoop stress near the holes was 87.0 ksi (not includ-

ing stress concentration effects), which has the lowest of all four designs

analyzed.

The introduction of tapped holes to the design may raise concerns about

reusability. However, refurbishment of tapped holes has been demonstrated on the

current SRM in the aft dome segment where threaded holes are successfully

repaired by using or replacing threaded helical inserts.

In summary, the single-recess bolted design has all the advantages of the

double-recess design while demonstrating better structural integrity. The

single-recess bolted concept could be considered as an alternative Block II

design.

3.4.5 INCLINED BOLTED JOINT

In an attempt to design a bolted configuration which minimizes inert weight and

loss of propellant volume, the inclined bolt joint concept was developed. This

design (Figure30) uses one-hundred sixty 1.25-in.-diameter MP35N bolts on a 15-

deg incline to fasten the case segments together. The incline allows the bolt

circle to be at the membrane line of action diameter without requiring a milled

recess for bolt installation. Redundant sealing is achieved with two bore seals

and one face seal. Verification in the proper sealing direction is obtained for

one bore seal and the face seal. Deflections of the bore seals are controlled

with a capture feature which mechanically forces the seals to follow the sealing

surface throughout pressurization. Shear in the bolts is controlled with a shear

lip on the joint outside diameter. Reusability of this design will be similar to

that of the single-recess bolted joint.
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Figure30summarizes the analysis results for the inclined bolted joint.

Note that all factors of safety are in excess of the required 1.40 except for the

bolts. The high bolt stresses are a result of the bolt incline which introduces

double curvature bending into the bolt. More or larger bolts could be installed

but this would reduce the material left between bolts below acceptable levels.

Under pressure the face seal gap remains at zero while the bore seals open up

slightly (0.006 and 0.008-in.). The basic hoop stress around the holes is 89.8

ksi (not including stress concentration effects), which is much lower than for

the double-recess bolted joint. The inclined bolted joint has the lowest weight

impact of the bolted joints considered but was not selected for the Block II SRM

due to high bolt stresses.

3.4.6 NOZZLE FIXED HOUSING-TO-CASE AFT DOME JOINT

The Block II SRM design proposes a clevis joint near the cylinder-to-aft dome

transition that is assembled after casting the propellant grain in the aft

segment. This allows inert assembly of the nozzle-to-aft closure, followed by

live assembly of the clevis joint in the aft case segment prior to shipping the

aft segment. The aft casting segment, as delivered to the launch site, is thus

the same as that currently delivered for the HPM.

The factory assembly sequence is altered and special tooling is required for

casting the aft segment but launch site assembly operations are not changed. The

forward nozzle subassembly is attached to the aft closure when shipped.

This concept allows trading a bolted fixed housing-to-aft dome joint for a

welded, enlarged aft closure that includes a short cylinder, the Y-joint and

skirt attach strut, the aft dome, and the fixed housing. This moves the nozzle-

attachment interface to the flex bearing aft end ring instead of the previous

dome-to-fixed housing interface. The nozzle attachment is achieved by the same

procedure currently used for assembly of the fixed housing-to-aft end ring in the

HPM nozzle.

Changing from a bolted joint to a welded juncture not only eliminates

complex sealing problems, but also reduces the inert weight and increases the

motor performance. Consequently, the trade study concluded that the lightest,
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most reliable design is obtained by replacing the bolted fixed housing-to-aft

dome joint with a girth weld and a reinforcing ring at the cone-to-sphere

juncture. These designs were compared in Figure24in the introduction. In this

section the analysis and trade study results are presented for the two designs.

The welded baseline concept design analysis is summarized in Figure 31.

This shows the greatly exaggerated deformation and the location and magnitude of

the maximum stresses in each of the design elements.

The analysis summary of an alternative bolted concept is presented in Fig-

ure 32. The objective of this bolted joint design study was to:

• Minimize joint opening at seal locations

• Provide redundant and verifiable seals

• Isolate joint from the flow environment

• Provide positive alignment for the nozzle assembly

This alternative bolted configuration for the Block II SRM aft closure-to-

nozzle fixed housing joint would be assembled and insulated as a single component

prior to mating with the forward nozzle section. The nozzle and dome assembly

would be attached to the cylindrical aft segment case where there is a much less

severe environment than at the HPM nozzle-to-case joint location. This attach-

ment joint would be mated at the factory and the aft segment would be shipped in

its current shipping configuration.

In addition to insulating over the aft dome-to-fixed housing joint the

alternative design would change the metal parts to the configuration shown. This

joint has an inclined sealing surface that has a small radial interference which

is drawn up when torquing the bolts such that the unpressurized seal gap is zero.

One-hundred 1.375-in.-diameter Inconel 718 bolts are used to secure the joint

just as in the HPM assembly. Figure32 summarizes the preliminary two-

dimensional analysis. All factors of safety are adequate and the maximum seal

gap opening is O.O06-inch.
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3.5 SEAL DESIGN

The purpose of the seals in the three case field joints and the aft dome-to-case

joint is to close the gap between the mating metal components and maintain

pressure integrity during motor operation. The material selected must provide

closure in the joint while accommodating the relative motion between the mating

surfaces and the environment at the joint. The O-ring seals and materials

proposed for the Block II clevis joint are designed to maintain its sealing

capability during the motion of the joint over the entire range of operating

conditions. The seal design will be extensively tested to verify acceptable

performance using the recently-developed methods such as the Joint Environment

Simulator (JES) test and Transient Pressure Test Article (TPTA).

Major design requirements/objectives for the case field joints and the aft

closure-to-case joint are the following:

O-rings must have 15 percent minimum squeeze assuming no compression set and

at least 10 percent squeeze when compression set is considered.

O-rings must have at least 0.002-in. clearance to prohibit contact with both
side walls.

Seal must maintain contact with the gland even at twice the expected

displacement or twice the expected displacement rate.

Seals must meet requirements over an ambient temperature range of 20 ° to
120OF.

Seals must not be damaged during joint assembly.

Seals must be verified after assembly by a leak check that seats the seal in
the seating direction.

Seal performance must not be jeopardized by the joint corrosion prevention
system or the seal lubricant.

Design studies by the RSRM team are considering both elastomeric and

metallic seals to arrive at a design which satisfies all requirements. The Block

II SRM design is following the RSRM program's conclusions wherever applicable.

PAQf'_ INI_NTIONALL Y BLANK
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3.5.1 ELASTOMERIC SEAL SELECTION FOR BLOCK II CLEVIS JOINT

As discussed in Section 3.5.2, a major O-ring material evaluation and selection

program is nearing completion. Final selection of the optimum elastomeric

material for the RSRM will be made after completing all the planned testing.

Preliminary results indicate that polysiloxane S-650 O-ring material will meet

the design requirements for the Block II clevis joint. The O-rings would be

molded into 18-ft lengths, then ground to the proper OD and spliced to obtain the

correct length. Testing to date shows that this material has adequate resiliency

to maintain contact with the gland at twice the expected displacement and twice

the expected displacement rate over the required temperture range of 20 ° to

120°F, without the need for auxiliary heaters. Figure33shows the S-650 O-ring

material's location to track a contact plate that opens 0.0206 in. during the

pressure rise time of 0.55 sec. This is about three times the maximum seal gap

growth of 0.006 in. predicted for the primary and secondary seals on the Block II

clevis. This exceeds the requirement that the O-ring material maintains contact

at twice the expected displacement or twice the expected displacement rate. The

polysiloxane material has excellent aging characteristics, which will be benefi-

cial on the shelf and installed in the joint. Compatibility with the case

corrosion inhibiting grease must be fully tested (which is under way at Morton

Thiokol).

The capture feature seal has a different set of design requirements. The

capture feature seal gap growth is zero, but the seal located closer to the

internal motor environments. As a result, the requirement for this seal to

provide some degree of thermal protection is an important consideration. Two of

the candidates considered for this location were an ablative-coated, fluorocarbon

polypak-type seal and an aramid fiber-reinforced delta-type seal. These are both

in the development stage and could not be selected as a baseline. As a result,

Viton 747 was selected for the capture feature seal because of its demonstrated

higher tolerance to heat and jet impingement compared with the other O-ring

materials tested to date.

3-90



I,_ "0

_o oo

Q.I.O ":" O.
_.... I

I I
_D
0 0

0
• °

0 0

('u!) q_,MoJ_Dde=o

3-91

0

°

0

LO
LO

0
LO

0

0

0

0
¢0

o

0

0

°
0

0

0

0

0

0

c/)

E
°m

k-

f-

o
0

O.

0

OJ

¢-
0
O.
(/)

rr

O)

O9

0
u_
cO
I

O9

0
0

.D

O_

==

ir



3.5.2 ELASTOMERIC SEAL DESIGN AND TESTING SUMMARY (RSRM PROGRAM)

There are many factors that determine proper seal material selection, many of

which overlap, and almost all of which can impact each other. This summary of

these factors addresses the following topics:

1. Standard Chemical and Physical Properties

2. Resiliency

3. Dynamic Sealing

4. Case Corrosion Protection and O-ring Lubrication

5. Aging

6. Heat Resistance

7. Joint Assembly

8. Leak Check

9. Geometric Sizing

10. Seal Producibility

11. Quality Acceptance

3.5.2.1 Standard Chemical and Physical Properties

All the O-rings that Morton Thiokol has investigated to date have basic proper-

ties that render the O-rings usable in this application. They have the strength,

elongation, and hardness properties that are within design targets. These

properties can change, however, when subjected to the SRM environments over a

period of time. For this reason it is necessary to monitor these properties

consistently in the test programs.

3.5.2.2 Resiliency

Resiliency is one of the key material properties of a seal used in a joint that

has any tendency to open during pressurization. All elastomeric seal materials

have the capability to spring back to some extent when the mating surfaces are

separated. This property is temperature-dependent. Fluorocarbon O-rings do not

have good resiliency at temperatures below 50°F, whereas the silicone O-rings

maintain good resiliency at temperatures as low as 10°F and below.
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Due to SRM pressurization at ignition, relative displacement of field joint

components occurs (joint rotation) causing the O-ring gland depth (distance

between the sealing surfaces) to increase rapidly. The ability of a nonpres-

surized O-ring to respond and remain in contact with the increasing gland depth

is a key factor in key field joint reliability.

It is imperative that the seal be capable of maintaining contact with its

adjacent surfaces without the need for pressure actuation for the complete

distance of separation with a positive safety factor. Morton Thiokol recommends

a safety factor of 2.0, i.e., the O-ring be capable of maintaining adjacent

surface contact at twice the separation rate and twice the distance. If a joint

does not open upon pressurization, resiliency ceases to be an issue.

A test configuration has been designed to provide data concerning the

ability of various proposed seal materials to keep up with the expanding gland.

The effect of temperature variations on the material's performance was determined

by varying the test temperature from 20 ° to 75°F. Several materials have been

tested under the same conditions, thus providing comparisons of the materials

based on their performance under test conditions.

Resiliency screening testing was conducted over a range of temperatures

using the gap growth curve shown in Figures33through37. The data from these

curves define the rate at which the platens of test setup separate. The first

curve (CFI9) assumed a gap growth of 0.019-inch. This was based upon a capture

feature that limits growth of the expanding gap to 0.019-inch. This curve

assumed a metal-to-metal condition at t--0. The second curve (CFI0) used a 0.010-

in. gap growth with a 0.009-in. initial gap.

Requirements for pressure seals established in CPW1-3600, Section
J

3.2.1.2(E), require each seal to maintain a sealing margin of 100 percent (based

on seal/metal tracking velocities) without pressure assistance. Seal gap

openings shown in Table 20 indicate a maximum opening of 0.009. Sealing margin

of 100 percent would give a total gap opening of 0.018. Tests were conducted

with 0.019 gap to include this condition. Tests were also run with an initial

gap of 0.009 and 0.010 growth as the joint design had not been finalized at the

time of testing.
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Resiliency can change in a material over time, in compression, and/or when

the material is altered by contact with another material. Effects of aging (in

free state, under compression, and at temperature) and effects of the case

corrosion inhibitor and the O-ring lubricant need to be assessed as they affect

resiliency. The silicones are the most resilient O-rings that Morton Thiokol has

found over the 20 ° to 120°F temperature range, but as discussed in Section

3.5.2.4 the Conoco HD-2 grease used for case corrosion protection causes the

silicones to swell. Though the fluorocarbon material has inadequate resiliency

at lower temperatures, it is conceivable that it could be the best material

choice because it is impervious to the grease, and at higher temperatures (75°F)

its resilience can meet the 2:1 safety factor. The resultant choice may be to

fly fluorocarbon O-rings with joint heaters.

Test results are shown in Figures 33through 37 with materials tested at

various temperatures showing that with temperatures below 50°F, Viton GLT, Viton

747, and fluorosilicone L677 require heaters and silicone S-650 and arctic

nitrile perform well at all temperatures tested. These tests were conducted

using double the expected gap growth and double the rate as required for the

RSRM.

3.5.2.3 Dynamic Sealin_

This test is of extreme importance to verify performance of the O-rings in the

Block II clevis joint. The test can be run with both cold and hot gas. The

dynamic environment encompasses all of the motions within the joint just prior to

and during the SRM action time. Twang, vibration, axial joint expansion, radial

joint rotation, O-ring sliding or rolling, and max q all cause motion within the

joint. These phenomena must be simulated and tested with and without pressure on

the seal to verify that the O-ring will seal at all times.

This test interrelates with resiliency, material compatibility, leak check,

and geometric sizing. Changes to any of these would require dynamic sealing

retests. Also, results of this testing may cause changes in those categories.
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3.5.2.4 Case Corrosion Protection and O-ring Lubrication

Conoco HD-2 grease is used to prevent corrosion in the SRM joint area. This

concern for corrosion is magnified by splashdown in salt water and the possibil-

ity of salt water being trapped for long periods of time in the joint area. HD-2

grease is the best corrosion inhibitor Morton Thiokol has found to date; however,

recent testing has revealed too much grease may create problems in leak testing

of joints and O-ring performance at SRM ignition. Amounts and methods of

application are currently under investigation at Morton Thiokol.

There is evidence that HD-2 grease is not an optimal O-ring lubricant,

particularly at lower temperatures, and tests have shown that it can mask flawed

O-rings during leak testing. Morton Thiokol and some of its subcontractors are

investigating alternate O-ring lubricants that could be used with the HD-2 grease

to enhance the ability of the O-ring to respond quickly when pressurized.

Material compatibility between the grease, the lubricant, and the O-ring must be

fully tested and understood. None of the materials can degrade the performance

of the other during assembly, leak check, storage, flight, and recovery.

3.5.2.5

Because all the SRM joints, except the three field joints and the one exit cone

field joint, are mated prior to segment shipment from the Morton Thiokol, Wasatch

facility, the O-rings have to perform as intended with all required margins of

safety for 5 years. The field joints have to be capable of performing for 6

months after stacking. All this is required after some finite O-ring shelf life.

Since many elastomers are age sensitive, testing must be done to demonstrate

performance capability after real-time aging at specified environments in the

compressed and uncompressed state. Material tests, resiliency, dynamic sealing,

material compatibility, heat resistance, and O-ring size can be affected and must

be investigated. A complete aging program plan is required to assure that all

factors sensitive to aging are appropriately evaluated and that test data exist

for materials from batches older than those to be flown.
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3.5.2.6 Heat Resistance

The SRM O-rings must be expected to withstand gases at temperatures of 500°F, and

possibly gas jets at temperatures higher than that. Most elastomeric O-rings

that Morton Thiokol has investigated can survive this environment for two

minutes, so this design factor becomes a nonissue for them. However, Morton

Thiokol has tested some noncircular, spring-loaded seals in a hot gas environ-

ment. Some of these seals melted or became badly disfigured and lost their

ability to seal. Though these seals met the resiliency requirement, they would

likely not hold up a motor environment if hot gas reached them.

Morton Thiokol has investigated some fiber-filled elastomers and some

ablative coated seals to increase the seal safety margin when subjected to hot

gas flow or a gas jet. These materials tend to be less resilient, but in certain

applications they may be desirable. Further development of such seals may be

desired for the Block II SRM design, but it would probably not be required.

3.5.2.7 Joint Assembly

Any new design should prevent the tendency to damage the seals during assembly.

Morton Thiokol has tested many elastomeric materials and seal configurations for

resistance to tearing. There are differences in material toughness, but all

seals tested to date are adequate to be assembled consistently without damage.

Morton Thiokol recommends, however, that any new joint design be assembled a

number of times to gain confidence that the mating operation will not result in

damage to the seals.

3.5.2.8 Leak Check

An important feature in a joint design is the capability to verify the presence

of undamaged seals in the assembled joint and to demonstrate that the seals will

perform as intended at or after ignition of the SRM. Leak checking between two

seals has been performed on all HPM field and nozzle-to-case joints in the past.

The development of the leak check procedure must take issues into account such as

placing the seals in the proper sealing direction, masking of the leak check by

grease or by metal-to-metal contact, or damage to other motor components as a
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result of the leak check. Testingby NASA, Morton Thiokol, and their subcontrac-
tors hasshownthat the leak test canbe maskedby greaseadjacent to the O-ring

(this is alsotemperature-dependent)and by face-to-face metal contact. A leak

testdevelopmentprogram would be required to minimize or eliminate this possi-

bility.

Dueto the useof ConocoHD-2 greasein the SRMjoint for both an O-ring

lubricant and protection againstcorrosion, testing hasbeenperformed to
determine the effect of HD-2 greaseon the sealverification test performed at

assembly.Testing performed by Morton Thiokol, MSFC,CameronIron Works,and
AECL hasconcludedHD-2 greasedoesblock pressurecommunicationaround the joint

at low temperaturesand has the ability to maskflaws in the O-ring and its

sealing surfaceat low temperatures(Figure38).

Thequestionof whether to perform a high-pressureand/or a low-pressure

leak test would have to be resolved. O-rings tend to seal better as the pressure

increasesup to the point of physically failing. (The failure point of the O-

ring is well above 1.4timesMEOP.) A relatively low pressurecheck (50 psig)
hasbeenusedon the HPM and will beusedon the RSRM. Any surface flaws on the

metal or on the seal itself would be mostreliably detectedby the low pressure

check. It might also be desirableto perform a pressurecheckat higher pres.-

suresto assurethat any tendencyto maskthe leak check is minimized. This is

an issuethat is highly dependenton the overall joint designand would have to

bedevelopedin conjunction with the designconfiguration, O-ring lubrication and

casecorrosionprotection materials,and the assemblyprocedures.

For the alternate joint configurations studied for Block II both the single-
and double-recessbolted configuration haveonly two O-rings with a metal-to-

metal fit. There is a concernthat the metal-to-metal fit may result in a seal

and the O-ringsmay not be verifiable. The inclined bolted configuration hasthe

sameconcernon the outer O-ring, but the two inner O-rings would be verifiable.

3.5.2.9 Geometric Sizine

O-ring and groove dimensions including allowable tolerances are critical to seal

function. Groove depth, O-ring cross-sectional size, O-ring stretch, compression
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set, and metal gap width result in O-ring squeeze. Once squeeze has been

determined, the groove width is adjusted to assure the cavity fill meets the

required value and to assure that the compressed O-ring does not contact both

groove walls.

Depending on the joint design, it may be desirable to configure the inlet

gap to pressurize at the center of the O-ring rather than at one side. Test data

indicate that such a design is desirable to enhance O-ring seal response at

ignition, but potential damage during installation may dictate that a more

traditional O-ring groove design would be required.

3.5.2.10 Seal Producibility

Since the steel hardware is so large, tolerance control of the sealing surfaces

can only reach a certain level. Tight tolerances are also required on the O-

rings, which necessitate controlled centerless grinding of the O-ring. This

operation is performed on a cord stock prior to the splicing operation. Morton

Thiokol is investigating new technology to grind O-rings after splicing, but it

is not known at present whether this will be possible or practical. Some O-ring

material that may be desirable because of good physical properties, such as

resilience and compression set, may be difficult to splice. Single-piece, net-

molded O-rings may have such a high rejection rate (even if the dimensional

control could be achieved) because of defects such as mold mismatch, backrind,

and surface voids, that there may not be enough O-rings produced to maintain

program schedules. The producibility issues must also be addressed in material

selection to assure that the program will not be hampered by unavailability of

acceptable O-rings.

3.5.2.11 Quality Acceptance

Morton Thiokol is working with various subcontractors to develop O-ring inspec-

tion techniques to verify that the flight O-rings will perform as intended.

Standard O-ring tests such as tensile strength, elongation, tear resistance, and

hardness will continue to be performed. Newly developed tests such as resiliency

(recovery capability) will also be incorporated. This test is a function of the

joint design, and the 2:1 safety factor within the specified environmental range
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will be demonstrated by acceptance testing. Atomic Energy of Canada Limited

(AECL) is developing methods for subsurface NDT inspection, such as tomography

and elastodynamic inspection. A minimum of one subsurface NDT procedure will be

incorporated into the acceptance procedures to detect voids and inclusions. AECL

is also conducting tests to determine the allowable level of voids and inclusions

that does not impact the sealability of the O-ring.

Dimensional inspection has been enhanced by using laser micrometers to check

cross-sectional size. Morton Thiokol is also developing procedures to assure

that splices are acceptably strong and dimensionally within the parent stock

envelope.

3.5.3 METALLIC SEAL DEVELOPMENT AND TESTING

Among the seal candidates that are being evaluated in the SRB redesign program

are metal-to-metal seals. Vetco Gray, an oil tool company, has used metal

sealing technology for the past 60 years and developed their Grayloc ® metal

seal 35 years ago for applications of high temperature and high pressure (2,000°F

external flame temperature, 20,000 psi). Vetco Gray has designed ThermaLok ®

T-seals for use in the SRM case-to-case joint and ThermaLok ® U-seals for the

SRM nozzle-to-case joint (Figures 39 and 40a). The seal rings are made of D6AC

steel, heat treated to the proper strength level based on safety factors of 1.2

on yield and 1.4 on ultimate. The sealing surfaces are coated with silver, which

serves as a lubricant to prevent galling at assembly and also exhibits excellent

high-temperature lubricity. The metal-to-metal seal is achieved by creating an

interference fit up to 0.220-inch, which results in elastic bending of the seal

legs to provide the required bearing load to prevent leakage. A 32-_in. Pd_S

surface finish is required for leak tightness in the 1 x 10-4 scc/sec range.

An important feature in the metal seal design is the ability of the seal to

maintain the bearing load at the sealing points throughout all dynamic motions of

the joint. For example, as the case expands under pressure, the T-seal follows

this movement because of the interference in the assembled, but unpressurized

condition. Because the seals are affected on cylindrical surfaces, axial

expansion of the joint does not affect the line load or the sealability at the

seal footprints. (An O-ring bore seal is affected similarly in that axial joint
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growth causes the O-ring to slide, but not to lift off the seal surface.) Other

ThermaLokR T-rings have maintained seals when the axial growth of the cylinders

due to pressure and temperature has been as high as 0.125 in., more than three

times the axial opening expected on any of the SRM joints.

An assembly and hydroproof test is planned for late December 1986 on the

T-seal in an SRM case joint with a capture feature, similar to the RSRM design.

The U-seal will be tested hydrostatically in the nozzle joint evaluation simula-

tor hydroproof (NJES-H) test series in the first quarter of 1987.

Design issues that need to be addressed on the metal seals are stress

corrosion and galvanic action. When the metal seals are installed, they are in a

state of stress and remain in that state until they are removed. Analyses are in

work to optimize the seal ring and joint designs to assure that this stress level

is below the threshold where stress corrosion becomes a concern. Galvanic action

will also be evaluated by analysis and test to assure that no hardware damage

will result.

Vetco Gray has also proposed an optimized design using a T-ring with a

capture feature, which significantly reduces the joint opening at the clevis

seals (Figure 49b). This is accomplished by moving the contact point between the

OD of the capture feature and the ID of the inner clevis leg aft, thus reducing

the tendency of the inner clevis leg to bend. In the nozzle-to-case joint, Vetco

Gray has proposed an alternate concept of a metal E-seal (Figure _ 0c) It is not

reusable since it yields inelastically at assembly, whereas the T- and U-seals

are reusable.

The impact on performance of the case joint T-seal is that its inert weight

is 350 lb per ring. It displaces 1,350 in. 3 of propellant. The U-seal weighs 85

lb, but metal removed from the nozzle fixed housing equals 135 lb for a net

weight savings of 50 lb. The U-seal displaces no propellant. The total impacts

of these designs per SRM is 1,000 lb of additional weight and 255 lb of propel-

lant lost for a total payload penalty of 298 lb over the RSRM baseline.

The advantage of this design regarding joint reliability is that it elimin-

ates the concern of combustion gases reaching an elastomeric primary seal. A
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metal seal is much more highly resistant to erosion caused by hot gas jet

impingement or recirculating circumferential flow. The seals are leak checkable

and are not affected adversely by joint rotation. They are energized at instal-

lation and are pressure-assisted rather than pressure-actuated. A maintain-

ability advantage is that the ring could be replaced at a relatively low cost if

the seal footprints are irreparably damaged. The flat seal surfaces on the SRM

case and fixed housing hardware could be blended out as is presently done.

Because of the attractive characteristics of these proposed metal seals,

Morton Thiokol's RSRM Team is continuing to test them for potential use in the

case-to-case and nozzle-to-case joints.
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3.6 NOZZLE DESIGN

The proposed design for the Block II SRM nozzle is a significant improvement over

the HPM or RSRM nozzle configurations. Changes are made to accommodate the

higher pressure requirements of the Block II SRM while increasing nozzle relia-

bility, optimizing the performance of the total system and removing all asbestos

materials. Increases in reliability are realized by using higher quality

ablative materials, incorporating redundant and verifiable seals and selecting

superior structural materials. The performance of the system is optimized on two

fronts. First, a reduction in total system weight is accomplished by changing

the overall configuration of the nozzle structure/flex bearing. Secondary weight

savings are realized by the careful selection of ablative and structural mate-

rials. The performance is also increased by using a lower erosion throat mate-

rial.

By far, the most extensive change in the Block II design over the current

design is in the configuration of the flex bearing. The angle of the flex

bearing, relative to the equatorial axis of the bearing, is increased and the

size of the bearing reduced. The overall change in the configuration of the flex

bearing is based in large part on experience gained through the Peacekeeper and

Trident programs which use similar high-angle bearing systems. This change in

the flex bearing design was accompanied by a change in the flex bearing thermal

protector. The flexible boot/cowl system of the current design using an asbestos

filled material is replaced with a tandem, sacrificial flex bearing requiring no

asbestos. This sacrificial flex bearing acts as a thermal protector for the

structural flex bearing and is superior to the boot/cowl system previously used

because it requires far less actuation torque.

Changes are also made in the configuration of the structural members. The

most obvious result of this alteration in the structural members is in the

placement of the nose. The nose has moved almost 5-in. aft (toward the

throat) and over 2-in. inboard. This change initiated a redesign of the remain-

ing structural members, as well, and reduced the weight of the structural system

considerably. Another effect of redesigning the structural members is the
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incorporation of redundant and verifiable internal seals. Steel has been

selected for all metal structural members to increase the reliability of the

system.

The extent of the metal structure in the exit cone is also reduced. In the

Block II design, the steel structure ends at the exit cone attach point. From

that point aft, the structure is a graphite epoxy, filament wound overwrap. This

replaces the aluminum shell and glass phenolic overwrap used on the current SRM.

The filament wound overwrap reduces the weight of the nozzle considerably. This

is accomplished in two ways. First, the graphite/epoxy system density is lower

than that of the aluminum and glass phenolic currently used. Second, the

stiffness of the graphite epoxy is higher so the required exit cone overwrap

thickness is reduced. Since the Block II design is required to meet more

stringent erosion and char safety factors in the aft end of the exit cone, the

thinner filament wound exit cone overwrap allows more liner material to be added

without sacrificing performance. Graphite epoxy overwrap systems are currently

being used on the Trident I (C-4) and Trident II (D-5) programs, and were, at one

time, considered for use on the HPM nozzle.

Another change being implemented to reduce the loss in performance due to

the higher erosion and char requirements is the change to PAN-based, carbon-

cloth phenolic, ablative liner materials. The PAN-based materials have a

slightly higher thermal conductivity than the rayon based materials currently

being used. This results in a lower erosion rate with only a slightly greater

char depth. Another advantage of the PAN-based materials is their low sodium

content. There is some indication that increased localized erosion in the

forward throat and nose regions of the HPM nozzle can be attributed to the high

sodium content of the rayon-based materials.

A PAN-based material is also being used as the ablative liner on the

stationary shell. The stationary shell is insulated with silica-filled nitrile

butadiene rubber (NBR) and is a continuation of the case insulation material.
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Another change is the removal of all glass phenolic insulation in the

nozzle. This results in a small sacrifice in performance (more ablative thick-

ness is required in some areas of the nozzle) but is considered a positive trade

because of the reduced manufacturing, material, and machining costs.

Experience gained over the past 15 to 20 years on programs such as Trident I

(C-4), Trident II (D-5), and Peacekeeper has been integrated into the Block II

SRM nozzle design. In addition, the extensive experience base of the HPM is

drawn upon. This experience base applies extensively to such areas as fabrica-

tion and reusability, the selection of ablative liner ply angles, the use of an

outer cork thermal protector, and the nozzle plug design.

3.6.1 REQUIREMENTS AND SCOPE OF STUDY

The Block II SRM nozzle was designed to meet the requirements outlined in

specification CPW1-3600.(1) A synopsis of the requirements that pertain to the

nozzle design are as follows:

Pressure Seals - ...Redundant and verifiable seals shall be provided

for each pressure vessel leak path except for the flex bearing...

Vectoring - The nozzle assembly shall be movable and be capable of

omniaxial vectoring to a minimum of 8 deg from the nozzle null

position...

Flex Bearing Protection - The nozzle assembly shall incorporate a

nozzle snubbing device suitable for preventing flex bearing damage

resulting from water impact. This device shall limit the flex bearing

axial travel to approximately one inch...

Environmental Protection - The nozzle assembly shall contain a covering

and/or plug to protect the SRM from the environments...

ISpecification No. CPWI-3600 for Space Shuttle Solid Rocket Motor Project,
16 November 1986.
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TVC Actuator Attach Points - The nozzle assembly shall have attach

points for the government furnished TVC actuators...

Nozzle Assembly/Aft Segment Interface - The nozzle assembly without the

exit cone assembly, shall be capable of being inserted into an assem-

bled SRB aft skirt...

Aft Exit Cone Severance Ordinance Ring - The aft exit cone severance

ordinance ring shall sever a portion of the nozzle exit cone. Sever-

ance shall be accomplished by using a detonator cartridge, and a Linear

Shaped Charge (LSC)...

Reusability - The reusability goals are...

Component

Nozzle metal parts

Nozzle flex seal reinforcement

shims and end mounting rings

Nozzle flex seal assembly
(elastomer material)

Number of
Reuses

19

19

Safety Factors for Metallic Flight Structures - Manned (2)

Ultimate Pressure = 1.40 x limit pressure

(verified by analysis and static test)

-- 2.00 x limit pressure
(verified by analysis only)

2MSFC-HDBK-505, Rev. A, Structural Strength Program Requirements, January 1981.
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NozzleSafety Factors- The minimumdesignsafety factors for the

nozzleassemblyprimary ablative materials shall be...

Erosion:2.0times maximumpredicted local final erosiondepth
Char: 1.25times maximumpredicted local final (end of action
time) char thickness

In addition to the design requirementsoutlined in CPW1-3600,the added
requirement that no asbestos-filledmaterialsbeusedis imposed.

3.6.2 SUMMARY OF SELECTED DESIGN

The Block II SRM nozzle features a state-of-the-art convergent-divergent aft

pivot movable nozzle which provides 8 deg of omniaxial vectoring capability. The

Block II nozzle layout is shown in Figure 41. Vectoring capability is provided

by a flex bearing consisting of spherical elastomer pads sandwiched between

spherical steel reinforcements. The elastomer pads are deformed in shear

allowing the nozzle to rotate about the center of the spherical bearing. Thermal

protection is provided by a sacrificial flex bearing in tandem with the struc-

tural flex bearing. The thermal bearing has elastomer pads and carbon cloth

phenolic reinforcements and end rings.

All structural members are made from D6AC steel with the exception of the

aft exit cone structure which features a lightweight filament wound graphite

epoxy overwrap. The stationary shell structure of the nozzle which uses the Mar

T250 material, has been made an integral part of the case aft dome in the SRM II

concept. All internal seals are redundant and verifiable.

PAN-based carbon-cloth phenolic is used for all ablative materials. In

highly erosive environments (inlet, throat, and forward and mid exit cone)

standard density (l.55-gm/cc) PAN materials are used; in less erosive areas (aft

portion of the exit cone, nose cap, and stationary shell) low density (1.20-

gm/cc) PAN materials are used to reduce system weight. The stationary shell is

insulated with a continuation of the case insulation material, silica-filled NBR.

The Block II nozzle is equipped with a snubbing device to preclude the

possibility of damage to the flex bearing during splashdown.
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A foam nozzle plug protects the Block II SRM propellant from radiant and/or

convective heating during SSME flight readiness firing tests or potential launch

pad aborts.

The exit cone is covered with a layer of cork aft of the compliance ring for

thermal protection from the SSME exhaust and from plume radiation and recircula-

tion of the SRM exhaust.

3.6.2.1 Flex Bearing

The Block II nozzle structural flex bearing consists of a reinforced elastomer

core and steel end rings. The core has eleven 0.220-in.-thick elastomer pads

separated by ten, 0.327-in.-thick steel reinforcing shims. The shims, elastomer

and end rings are vulcanized together to form the assembly shown in Figure42.

The end rings and reinforcing shims are fabricated from D6AC steel. The elasto-

mer chosen for the Block II flex bearing is a polyisoprene formulation, DL-1514.

The thermal bearing consists of eleven 0.220-in.-thick pads of the same

polyisoprene elastomer used in the structural bearing and ten 0.327-in.-thick

reinforcing shims. The end rings and reinforcing shims are made of carbon-cloth

phenolic. The shims, end rings, and elastomer are vulcanized together to form

the assembly shown in Figure42.

The snubber assembly (shown in Figure 41) is similar in design to the one

used on the HPMnozzle. The snubber will limit axial travel of the nozzle to

approximately 0.5-in. and will not interfere with vectoring the nozzle. The

assembly contains provisions for shimming to obtain the clearances necessary to

achieve the above-noted axial travel.

3.6.2.2 Structures and Internal Seals

The support structure of the Block II nozzle, other than the flex bearing and the

exit cone overwrap, is made from D6AC steel. D6AC steel is used for some

structural members in the HPMand RSRMnozzles. The structure is composed of the

three members shown in Figure 43. This is one less structural member than in
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the current nozzle. In addition to eliminating one member and one joint, the

structure is simplified and contains no joints which connect more than two

structural members. This has caused some problems in the HPM nozzle.

All joints are designed with redundant, verifiable seals as a requirement.

Where possible, dual face seals are employed. At least one face seal is employed

in all joints. Details of the joints/seals are shown in Figure43.

The aluminum housing and glass phenolic overwrap exit cone structure used on

the HPM nozzle has been replaced by a short steel adapter and a graphite epoxy,

filament wound overwrap. The graphite epoxy consists of Hercules AS4, 12

thousand filament, graphite fibers impregnated with Fiberite 982 epoxy resin.

This fiber/resin system is the same combination used on the Trident II (D-5)

program. A similar system is also used on Trident I (C-4). Based on preliminary

analysis, the required overwrap thickness at the exit plane is approximately

0.140 inches. This represents a thickness savings of 43.3 percent over the HPM

design. The required overwrap thickness just aft of the compliance ring is 0.200

inches. This represents a thickness savings of 60 percent over the HPM design.

3.6.2.3 Ablatives and Insulators

PAN-based, carbon-cloth phenolic ablative materials have been selected for the

Block II SRM nozzle. Standard density (-l.55-gm/cc) materials will be used in

areas of high erosion such as the inlet, throat, and forward exit cone regions.

Low density materials (-1.20-gm/cc) will be used in less erosive environments

such as the nose cap, stationary shell, and aft exit cone. The low density

materials have been shown to perform similarly to the standard density materials

in these areas, yet represent over an 11 percent savings in the weight of the

ablatives.

The standard density PAN-based materials proposed for the Block II SRM

nozzle include both continuous PAN fiber and spun PAN fiber materials. The low-

density materials are made of continuous PAN fibers in open weaves with microbal-

loon fillers to yield densities in the range of 1.0 to 1.3 gm/cc. Multiple

vendors are available for all of these PAN materials.
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Based on available data, the spun PAN, continuous PAN, and low-density PAN

materials have relatively equivalent material properties, although the spun PAN

materials show superior erosion performance and char integrity.

Ply angles for the Block II ablative liners are chosen that emulate the ply

angles of the RSRM ablative liners. The ply angle selection is based on

studies (3) on the effect of ply angles on erosion and on manufacturing experi-

ence.

The aft portion of the exit cone is protected from SSME exhaust heating, and

SRM plume radiation, and hot gas recirculation by the same cork TPS used on the

HPM nozzle.

The nozzle plug is the same design as the HPM nozzle foam plug with the

exception that the density of the foam is increased from 2 to 3 lb/ft 3 as it is

for the RSRM nozzle plug.

3.6.3 DISCUSSION

3.6.3.1 Flex Bearing

The design of the structural flex bearing for the Block II SRM nozzle (shown in

Figure 44) is based on experience gained from the HPM flex bearing and several

other systems, principally, the Peacekeeper and Trident I (C-4) and II (D-5)

programs. Table 21 compares some of the pertinent design parameters for the

Block II flex bearing to several other flex bearings currently in use.

3TWR-14360, Nose/Inlet (403/404) Preliminary Redesign Thermostructural
Evaluations, 27 April 1981
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Table 21.

Blk II

Flex Bearing Design Parameters

HPM P..__K_K c-4 D-.__55

Contact 1,920 1,630 3,160 3,580 2,700
Pressure (psi)

Average Shear 240 133 262 148 241
Strain* (%)

Shear Stress (psi) 385 222 550 580 500

Rin/R 1 1.29 1.I 1 1.58 1.27 1.27

*Shear strain due to vectoring

All of the design parameters shown in Table 21 fall well within the demonstrated

experience base. The shear stress and strain levels, while higher than on the

HPM, are less than those demonstrated on other operating systems. Increasing the

contact pressure slightly over the level used in the HPM flex bearing reduces the

size of the bearing significantly. The contact pressure is increased by moving

the flex bearing to a higher angle on the bearing envelope.

The Rin/R 1 ratio (see Figure44 for definition) in the table is a measure of

the position of the flex bearing on the hemispherical envelope. A large ratio is

a bearing near the pole; a value near 1.0 is a bearing near the equator (such as

the HPM bearing). Increasing the angle of the bearing reduces the stresses in

the bearing at a given load, making it possible to increase the design pressure.

The higher angle also makes attachment of a thermal protection system for

the structural flex bearing easier and allows the use of a thermal protector

which requires much less torque. All this is at the expense of the torque level

of the flex bearing. Increasing the angle of the bearing requires increasing the

spherical radius of the bearing and torque is proportional to the fourth power of

the spherical radius. This increase in torque is partially offset by the reduced

size of the bearing, and partially by the reduction in torque required for the

thermal protection system.

The predicted torque levels for the Block II structural and thermal flex

bearings are compared with the torque levels for the flex bearing and thermal
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boot system used on the HPM in Table22. The much lower total torque level of

the system will allow use of the same TVA system for both flex bearings even

though the moment arm is slightly reduced on the Block II system. Although the

pivot point is moved aft 15.96 in. on the Block II bearing, the effect on the

system is minimal. The moment arm is reduced by 5.8 percent and the required

stroke is reduced by the same amount. Assuming that the actuator stall force is

the same as on the current SRM, the maximum allowable torque for the Block II

system would be 4.16 x 106 in.-lb. The geometries of the two systems are shown

in Figure/45.

Table22. Maximum Predicted Torque Comparison

Maximum Torque (xl06 in.-lb_

Block II SRM HPM

Structural

Flex Bearing 3.253

Thermal

Bearing or Boot 0.677

Total 3.930

3.525*

1.707

5.232

*Predicted value - Measured maximum is 3.670 x 106 in.-lb

The higher angle of the flex bearing also increases its stiffness. The

axial deflection is predicted to be approximately 80 percent of the HPM axial

deflection of 1.0 in. at MEOP or 0.80 inch.

Because of the change in geometry of the flex bearing the movement of the

pivot point under pressure and actuation forces will change also. The axial

movement of the pivot point will be reduced by an amount proportional to the

axial stiffness increase. The size of the radial pivot point box dimension will

change due to several factors, principally the higher angle (increase), small

size (increase), and thinner pads (decrease). The cumulative effect of these

factors is to increase the size of the pivot point box in the radial direction by

a factor of nearly 2.0.

Examination of the results of several HPM flex bearing bench tests revealed

maximum pivot point movements of 0.75 in. forward, 1.25 in. aft, and +0.55 and

-0.75 in. in the radial direction. Applying the above factors to these values
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gives maximum axial pivot point shifts of 0.61 in. forward and 1.01 in. aft. The

maximum radial shifts are +1.10 in. and -1.50 in., all of which comply with the

current specification (STW7-2740[F]).

To satisfy concerns that moving the pivot point 15.96 in. aft would cause

clearance problems, a vectored nozzle clearance study was conducted using CAD/CAM

layouts of the Block II and HPM nozzles. The nozzles were vectored about their

respective pivot points to the maximum allowable 8-deg vector angle and super-

imposed along with the ICD clearance envelope. Figure 46 shows the results of

this clearance study.

Due to the pivot point moving aft, the Block II exit cone travels a smaller

distance, providing greater clearance than on the HPM nozzle. The nose of the

Block II nozzle is further from the pivot point than the nose of the HPM nozzle

and moves a greater distance. However, due to its smaller size the vectored

position of the Block II nozzle lies within the vectored position of the HPM

nozzle.

The thermal protection flex bearing draws on experience gained in several

strategic missile motor programs which utilize flex bearings made from com-

posites.

For the thermal bearing a 2-D thermal analysis using the axisymmetric

ablation and charring program (ASCHAR) was necessary due to the CCP/rubber-

laminated structure of the component. The results of the analysis predicted

0.124 in. of erosion and 0.861 in. of char. This gives a margin of safety of

0.70 based on the required factors of 2 x erosion + 1.25 x char and an initial

thickness of 2.25 inches. There is an additional 0.25 in. of rubber on the

inboard side of the thermal bearing which yields final temperatures at the

interface between the two flex bearings of 85/212°F at end-of-burn/splashdown

(113 sec/400 sec). The thermal analysis procedure is described at the end of

Section 3.6.3.3.

The carbon-cloth phenolic reinforcements selected for this bearing will not

support the same stress levels as the steel reinforcements in the structural flex

bearing. To reduce the amount of load that the thermal protection flex bearing
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is required to support, the modulus of the elastomer will be lowered to approxi-

mately half that of the structural bearing elastomer. This will be accomplished

by vulcanizing the structural bearing assembly at an elevated temperature (320 °

versus 290°F for the thermal bearing). This will also serve to reduce the torque

which is needed to actuate the thermal protection flex bearing.

The overall flex bearing/thermal protection system is significantly lighter

than the HPM flex bearing/thermal boot system, as shown in Table23.

Table 23. Flex Bearing Weight Comparison

Weight (lb)
Block II SRM HPM

Structural Flex Bearing

Thermal Bearing or Boot

Total

3390 7026

440 1280

3830 8305

A flex bearing operates by deforming the elastomer pads in shear. To

perform over a broad temperature range the elastomer must have stable shear

properties over that temperature range. Figure 47 is a comparison of the shear

modulus of the polyisoprene elastomer chosen for use in the Block II flex bearing

and the current natural rubber elastomer as a function of ambient temperature.

The natural rubber elastomer is temperature sensitive and subject to strain-

induced crystallization at temperatures below 45°F. Polyisoprene is less

sensitive to temperature and is unaffected by strain-induced crystallization to

temperatures well below the minimum operational temperature for the Block II SRM.

Table 24 compares the mechanical properties of the polyisoprene elastomer

used in the Block II flex bearing to the natural rubber elastomer used in the HPM

nozzle flex bearing. Polyisoprene is equivalent or superior in all areas. The

superior mechanical properties and superior temperature performance led to the

selection of the polyisoprene for the Block II flex bearing.
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Table24. Elastomer Shear Properties

Modulus Ult Stress Ult Strain

(psi) (psi) (%)

Natural Rubber -- 0.5 ipm 22.2 740 950
-- 120 ipm 25.9 780 1,115

Polyisoprene Rubber -- 0.5 ipm 20.5 930 1,280
-- 120 ipm 25.0 960 1,280

IShear modulus at 50 psi shear stress
2All data at ambient temperature

A preliminary structural analysis of the Block II structural flex bearing

was conducted using TASS routine SGA01. SGA01 is an axisymmetric finite element

model developed to analyze flex bearings. The flex bearing core is modeled using

a fixed aft boundary and a radially restrained plate on the forward boundary.

Analyses were conducted for null and maximum positive and negative vectored

cases. Table 25 gives a brief summary of the worst-case stress predictions of

this analysis along with minimum margins of safety at the locations shown in

Figure48.

Table 25. Flex Bearing Analysis Results

Component Stress Mode Margin of Safety

Elastomer 385 psi In-Plane Shear 0.30

Shims 137 ksi Hoop Compressive 0.02

The quoted margins of safety are based on the 1.4 factor of safety required

for structural members which can be proof tested. Predicted axial deflection of

the flex bearing at MEOP is 0.507 inch.

3.6.3.2 Structures and Internal Seals

Steel Structure. The steel structure of the Block II nozzle was designed to be

as simple and lightweight as possible while maintaining the structural integrity

of the nozzle (Figure 43).
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After the inlet and exit contours were generated, a heat transfer analysis

was conducted to determine necessary ablative and insulation thicknesses and

thereby establish the inner boundary of these materials. Once this surface had

been established the supporting structure was designed to minimize excess weight,

while maintaining positive margins of safety under maximum conditions of the two

load sources. The two load sources are the internal motor pressure and the

nozzle vectoring loads.

An initial analysis was conducted to confirm the integrity of the structural

components of the nozzle. The nozzle was modeled using TASS, Morton Thiokol's

in-house axisymmetric finite element code. The finite element grid used in the

analysis is shown in Figure 49. To ensure conservative results, the phenolic

materials were modeled using low stiffnesses and high Poisson's ratios. The

effect of this is that the pressure load is transferred to the structural

components with the phenolics providing no structural support. A chamber

pressure of 1,019 psi, the MEOP for the aft end of the motor, was used.

To determine the net axial and shear loads that the bolted interfaces must

support, single-bolt elements were placed in the finite element model joining the

appropriate components. The material model used for the bolt elements was the

same as that used for steel, with a low hoop modulus. Pivot elements capable of

supporting only normal compressive loads were placed on the inner and outer

diameters of each interface.

The stresses for the forward and aft end rings were increased by a factor of

2.0 to account for the increase in stress due to vectoring.

The results of the analysis show that the structural components of the

nozzle meet the required factors of safety. The minimum factors of safety are

summarized in Figure 50 and Table 26. These safety factors were calculated using

the uniaxial equivalent stress and an ultimate strength of 195 ksi. A minimum

factor of safety of 1.4 is required for the forward and aft end rings, since

these components can be proof tested. All other components require a minimum

factor of safety of 2.0.
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The maximum predicted strain for the support structure adjacent to the

phenolic components was used with the room temperature carbon-cloth fiber strain

allowable to calculate a factor of safety. The resulting safety factor is equal

to 6.85, and demonstrates that no excessive deformation occurs in the structure.

The results of the analysis show that all of the bolts, with the exception

of those at the outer diameter of the forward interface, are loaded in compres-

sion. Since the shear loading in the bolts is limited by the diametrical

tolerances of the mating components, the factor of safety for those bolts loaded

in compression is dependant only on the preload torque. It is recommended that

one-hundred 3/8-in., 180-ksi bolts be used in each location. The resulting

factor of safety for the bolts loaded in tension is 7.38.

Table 26. Minimum Factors of Safety

Location Stress (psi) Strain (in./in.) Factor of Safety

1 101200 1.93

2 65100 2.99

3 73950 2.64

4 72560 2.69

5 84925 2.30

6 0.0020 6.85

7 24440 7.38

Internal Seals. All internal nozzle seals were designed with dual O-rings using

dual face seals where possible and at least one face seal in all cases (Figure 43).

A more detailed structural analysis must be conducted to determine joint deflec-

tions to confirm that the selected seal arrangements will perform as intended.

The aft end ring-to-stationary shell joint uses two face seals located

inboard of the bolt circle. Placing both seals inboard of the bolts eliminates

the need for Stat-O-Sea,s ® on the bolts and reduces the number of seals

required. The line of action of the stationary shell was selected to minimize

joint rotation during motor pressurization and vectoring; however, a more

detailed analysis is needed to confirm actual joint rotations.
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The forward end ring-to-nose cap support joint presents the greatest

challenge from a sealing standpoint. There is a limited amount of room in which

to place the seals and it is much more difficult to vary the line of action of

the joint to minimize deflections. One face seal and one diametral seal are

employed on this joint. By using large diameter seals and a double shear lip to

limit radial deflections of the two structures relative to one another, a high

degree of confidence in the joint is obtained.

The nose cap support-to-throat support joint uses two face seals captured

between two concentric bolt rings. This design minimizes joint deflection and

gives a high degree of confidence.

The throat support-to-exit cone adapter joint also has limited room to place

seals. One diametral seal and one angled face seal is used on this joint. The

location of the joint in a relatively low stress area and the close proximity of

the seals to the bolt ring give a high degree of confidence in the seal

integrity.

Exit Cone Support Structure. A graphite epoxy, filament wound exit cone overwrap

has been selected as the structural material for the SRM Block II exit cone.

This selection is based on a reduced nozzle weight, savings in performance, and

on Trident I and II experience.

The exit cone support structure is shown in Figure51. The graphite epoxy

overwrap is attached to the steel throat support using an adapter that is

integrally wound and cured into the structure. The compliance ring for the TVC

is the same design used on the current SRM nozzle and is integrated in the same

manner. A graphite epoxy stiffener ring at the exit plane will consist of a

buildup of hoop ply layers.

The structure will have a minimum of four dual polar layers (one polar layer

equals two plies). The thickness of the graphite epoxy will be controlled by

varying the number of hoop plies applied (a minimum of four hoop plies). Based

on preliminary analysis (4) the required overwrap thickness at the exit plane is

approximately 0.140 in. (polar layers ffi 0.080 in., hoop layers = 0.060 in.). The

required overwrap thickness just aft of the compliance ring is approximately
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0.200 in. (polar layers = 0.140 in., hoop layers ffi 0.060 in.). These represent a

thickness savings of 43 percent and 60 percent over the HPM design and a weight

savings of at least 50 percent if the thicker, heavier glass phenolic were to be

used. Additional analysis needs to be performed to define the required filament

wound overwrap thickness in the adapter region and to verify the preliminary aft

exit cone overwrap thickness.

The reduced thickness is also important because the aft exit cone ablative

thickness must be increased to assure meeting erosion and char requirements and

to counteract the elimination of the glass phenolic insulation. With a

thinner support structure, the erosion, char, and temperature requirements can be

met without sacrificing performance due to a reduced exit diameter (the inner

diameter contour of the Block II design is the same as the HPM nozzle contour).

The graphite epoxy system selected for use on the Block II design is an AS-4

(Hercules) graphite fiber impregnated with a Fiberite 982 epoxy resin system.

The laminate will have a fiber volume fraction greater than 55 percent, a resin

content of approximately 33 percent and a cured density of 1.55 gm/cc. The

selection was based on static test results, fabrication studies, and analyses

conducted on the graphite epoxy system during the NASA "Alternate Nozzle Ablative

Materials Program."(5) This system was selected because analysis showed it to

have the lowest required thickness and highest margin of safety, it performed

well in a subscale static test environment, and because of the experience base

developed from its use on Trident II.

A short review of the trade study, (4) conducted during the early stages of

this program, comparing the various graphite epoxy systems -- AS4/982, Hitex/E742

and T300/Epoxy -- follows.

4"SRM Block II Trade and Design Studies, Nozzle," TWR-32667-07, 4 November 1986.

5"Alternate Nozzle Ablative Materials Program," JPL Publication 84-58,

1 September 1984.
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Static Test Evaluation - An AS4/982, filament wound, graphite epoxy exit cone

structure was tested on a JPL nozzle during the NASA Alternate Materials Program.

Post-test inspection showed that the graphite epoxy overwrap on the exit cone

liner was totally intact and unaffected by the internal or external environments.

Fabrication Study - Two graphite epoxy systems were evaluated for their fabrica-

tion and processing ease and laminate properties. The first was the AS4/982

system. The other was Hitex, 12K fiber impregnated with USP E742 epoxy resin.

Laminates of both materials were filament wound on flat aluminum mandrels and

autoclave cured for 1 hour at 176°F and 8 hours at 200°F. Test specimens were

machined from these laminates and tested for mechanical properties at room

temperature and at 250°F. Results showed that at room temperature the

Fiberite system had slightly higher longitudinal tensile and compressive

strengths. The shear strengths of the two materials were similar. At the

elevated temperature the Fiberite system showed considerably higher material

strengths in all directions.

Analysis - The original analysis on the graphite epoxy overwrap structure was

conducted using the HPM nozzle design. These numbers can be translated easily to

the Block II design because the forward and aft exit cone overwrap contours are

similar to the HPM design.

The thickness required for the AS4/982 system was compared with the thick-

ness required for a T300/epoxy system. These required thicknesses were also

compared with the HPM glass phenolic thickness. The comparisons were conducted

on the free standing portion of the exit cone (from the LSC to the aft exit

plane) using equivalent stiffness matrices comparisons to determine the required

thickness of the replacement material.

Both graphite epoxy systems showed major reductions in required thickness

and weight over the glass phenolic system. The AS4/982 laminate showed slightly

better improvement than the T300/epoxy system because of its higher stiffness and

lower density (1.412 gm/cc versus 1.744 gm/cc). The overwrap stress analysis

results, also comparing AS4/982 to T300/epoxy, showed significant positive

margins of safety (based on a safety factor of 1.4) for both systems.
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3.6.3.3 Ablatives and Insulators

Ablatives. PAN-based, carbon-cloth phenolic ablative materials are selected for

the Block II SRM nozzle design to: 1) increase the nozzle performance by

reducing erosion in the throat, 2) optimize the Shuttle payload by using

lightweight PAN materials wherever possible, and 3) avoid the delamination and

pocketing erosion anomalies experienced earlier with the rayon-based, carbon-

cloth phenolic materials.

At this stage of the project, the best selections for each area of the exit

cone are: 1) a spun PAN inlet, throat, and forward exit cone for increased

performance by reducing erosion and 2) a low-density PAN nose, stationary shell,

and aft exit cone liner for reduced nozzle weight and increased payload. Figure

shows the location of each of the ablative liner rings and the material selection

for each. Continuous PAN materials are alternates to the spun PAN materials

until additional material property data and processing evaluations can be

obtained. A description of the alternate PAN-based materials follows:

Spun PAN

K411 This Fiberite Corporation material is a phenolic resin-

impregnated, balanced, eight-harness, satin weave fabric. The

phenolic resin contains 5-16 percent by weight carbon powder

filler. The carbon fabric is a product of Stackpole Fibers Co.,

known as Panex SWB-8. The fabric is woven from carbon yarn

PANEX 30Y/800d which is made by spinning long staple PAN

filaments prior to carbonization.

FM5834A This U.S. Polymeric material is a phenolic resin-impregnated,

balanced, eight-harness, satin weave fabric. The phenolic resin

contains 13-18 percent by weight carbon powder filler. The carbon

fabric is a product of Polycarbon Incorporated, designated PSCA.

The fabric is woven from carbon yarn which is made by spinning

long staple PAN fibers prior to carbonization.
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Low Density PAN

MX134LD This Fiberite Corporation material is a phenolic resin-

impregnated, open plain weave fabric. The 38-44 percent by weight

rubber (NBR), butadiene-acrylonitrile, modified phenolic resin

contains 10-13 percent by weight carbon microballoon filler. The

fabric is a plain weave with Union Carbide T300 Grade WYP

30-1/0 carbon yarn. The yarn contains 3,000 filaments that are

made by carbonizing PAN continuous filament.

FM5908 This U. S. Polymeric material is a phenolic resin-impregnated,

mock Leno weave fabric. The phenolic resin contains l0 percent by

weight carbon microballoon filler. The fabric is woven with three

Hitco Hi-Tex carbon yarns. Each yarn contains 6,000 filaments

that are made by carbonizing PAN continuous filament.

Continuous PAN

MX4961 This Fiberite Corporation material is a phenolic resin-

impregnated, eight-harness, satin weave fabric. The phenolic

resin contains no filler. The fabric is woven with Union Carbide

T300 Grade WYP 30-1/0 carbon yarn. The yarn contains 3,000

filaments that are made by carbonizing PAN continuous filament.

FM5879 This U. S. Polymeric material is a phenolic resin-impregnated,

eight-harness, satin weave fabric. The phenolic resin contains

10-18 percent by weight carbon powder filler. The fabric is woven

with Hitco's Hi-Tex carbon yarn. The yarn contains 3,000 fila-

ments that are made by carbonizing PAN continuous filament.

The selection of low-density and spun PAN materials for use in the Block II

SRM is reinforced by thermal analysis. Comparisons of predicted erosion and char

depths were made using the Block II design configuration. Predictions are made

based on material data available on FM5908 (low density PAN material) and K411

(spun PAN material) and are compared with predictions based on FM5055 (baseline

rayon) material properties.
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The low-density material and the rayon material were compared in the nose

cap. Predictions indicate that the low density material will erode 32 percent

deeper than the rayon material, but the char depth of the low-density material is

considerably lower and the required material thickness (2 x erosion + 1.25 x

char) for the low-density PAN is 22 percent less. Based on experience with the

Alternate Materials Program, (5) the erosion and char of the low-density PAN in

the aft exit cone will be similar to that of the rayon.

The spun PAN- and rayon-based material compartions Indicate that the spun

PAN required thickness (2E + 1.25C) is, on average, only 3 percent less than the

rayon material, but the lower erosion and proven superior char integrity of the

spun PAN makes it a better selection for the high-erosion regions of the Block II

design. A 4 percent decrease in erosion was used for calculations with the PAN

material. This is a conservative assumption since test data show 13 to 22

percent less erosion with PAN materials.

Erosion, char, and temperature predictions at several locations (see Figure 52)

for a definition of station locations) on th¢ stationary shell and along the

nozzle contour are shown in Table27. Stations 1 to 5 in the nose cap, Stations

15 to 18 in the aft exit cone, and the stationary jholl were modeled using FM5908

material properties. The remaining stations were modeled using K411 material

properties. Positive margins of safety for erosion and char are predicted at all

locations based on designed ablative thicknesses.

All steel temperatures at the end-of-burn/splashdown (400 sac) are within

the specified requirements of +10°F rise/450°F, respectively. The graphite epoxy

temperature requirements were set at 350°F at 400 see based on experience and a

predicted cure temperature of 300°F; however, the limit on the graphite epoxy

temperature may be reduced pending processing study results conducted during the

D&V phases of this program. The 400-see graphite epoxy temperatures at Stations

17 and 18 are not applicable because the severance of that portion of the exit

cone is soon after the end of burn. Details of the thermal analysis procedure

are presented at the end of this section.
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The low-density material and the rayon material were compared in the nose

cap. Predictions indicate that the low density material will erode 32 percent

deeper than the rayon material, but the char depth of the low-density material is

considerably lower and the required material thickness (2 x erosion + 1.25 x

char) for the low-density PAN is 22 percent less. Based on experience with the

Alternate Materials Program, (5) the erosion and char of the low-density PAN in

the aft exit cone will be similar to that of the rayon.

The spun PAN- and rayon-based material comparisons indicate that the spun

PAN required thickness (2E + 1.25C) is, on average, only 3 percent less than the

rayon material, but the lower erosion and proven superior char integrity of the

spun PAN makes it a better selection for the high-erosion regions of the Block II

design. A 4 percent decrease in erosion was used for calculations with the PAN

material. This is a conservative assumption since test data show 13 to 22

percent less erosion with PAN materials.

Erosion, char, and temperature predictions at several locations (see Figure 52)

for a definition of station locations) on the stationary shell and along the

nozzle contour are shown in Table27. Stations 1 to 5 in the nose cap, Stations

15 to 18 in the aft exit cone, and the stationary shell were modeled using FM5908

material properties. The remaining stations were modeled using K411 material

properties. Positive margins of safety for erosion and char are predicted at all

locations based on designed ablative thicknesses.

All steel temperatures at the end-of-burn/splashdown (400 sec) are within

the specified requirements of +10°F rise/450°F, respectively. The graphite epoxy

temperature requirements were set at 350°F at 400 sec based on experience and a

predicted cure temperature of 300°F; however, the limit on the graphite epoxy

temperature may be reduced pending processing study results conducted during the

D&V phases of this program. The 400-sec graphite epoxy temperatures at Stations

17 and 18 are not applicable because the severance of that portion of the exit

cone is soon after the end of burn. Details of the thermal analysis procedure

are presented at the end of this section.
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The low-density material and the rayon material were compared in the nose

cap. Predictions indicate that the low density material will erode 32 percent

deeper than the rayon material, but the char depth of the low-density material is

considerably lower and the required material thickness (2 x erosion + 1.25 x

char) for the low-density PAN is 22 percent less. Based on experience with the

Alternate Materials Program, (5) the erosion and char of the low-density PAN in

the aft exit cone will be similar to that of the rayon.

The spun PAN- and rayon-based material comparisons indicate that the spun

PAN required thickness (2E + 1.25C) is, on average, only 3 percent less than the

rayon material, but the lower erosion and proven superior char integrity of the

spun PAN makes it a better selection for the high-erosion regions of the Block II

design. A 4 percent decrease in erosion was used for calculations with the PAN

material. This is a conservative assumption since test data show 13 to 22

percent less erosion with PAN materials.

Erosion, char, and temperature predictions at several locations (see Figure 52)

for a definition of station locations) on the stationary shell and along the

nozzle contour are shown in Table27. Stations 1 to 5 in the nose cap, Stations

15 to 18 in the aft exit cone, and the stationary shell were modeled using FM5908

material properties. The remaining stations were modeled using K411 material

properties. Positive margins of safety for erosion and char are predicted at all

locations based on designed ablative thicknesses.

All steel temperatures at the end-of-burn/splashdown (400 sec) are within

the specified requirements of +10°F rise/450°F, respectively. The graphite epoxy

temperature requirements were set at 350°F at 400 sec based on experience and a

predicted cure temperature of 300°F; however, the limit on the graphite epoxy

temperature may be reduced pending processing study results conducted during the

D&V phases of this program. The 400-sec graphite epoxy temperatures at Stations

17 and 18 are not applicable because the severance of that portion of the exit

cone is soon after the end of burn. Details of the thermal analysis procedure

are presented at the end of this section.
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The ply angles for the ablative liners (Figure53) are chosen to emulate the

ply angles of the RSRM ablative liners. The ply angle selection was based on

recent studies (3) concerning the effect of ply angles on erosion and on manufac-

turing experience. Numbers in parentheses after the Block II ply angles are the

ply angles for the corresponding RSRM ablative rings.

Specific materials selections are based on fabricability, motor performance,

critical properties, and predicted erosion and char. All of the PAN-based

materials were considered acceptable with respect to fabrication considerations

and with respect to motor performance (erosion/char). The spun PAN exhibited

superior char integrity; no sign of delaminations. Of the critical material

properties: 1) the PAN- and rayon-based materials have similar interlaminar

shear strengths, 2) the PAN materials have slightly lower across-ply tensile

strength, 3) the standard density PANs have similar CTEs except that there is

less shrinkage with the spun PAN in the with-ply and across-ply directions, and

4) the low-density materials have CTEs similar to rayon. Table 28 presents a

summary of the room-temperature and elevated-temperature mechanical property data

available on the rayon- and PAN-based materials.

The selection of PAN-based materials is based on data from the recent NASA

program, "Alternate Nozzle Ablative Materials. ''(4,5) During the Alternate

Materials Program, standard density and low-density PAN-based materials were

evaluated and compared for erosion and char performance in subscale static tests,

processibility in fabrication studies, and for critical thermal and mechanical

properties in material characterization testing. A short review of the data

presented in that report follows.

During the NASA "Alternate Nozzle Ablative Materials Program," fifteen

alternate PAN-based, carbon-cloth phenolic, tape-wrapped materials were tested as

nozzle ablative liners. Four of the PAN carbon-cloth phenolic materials were

made using carbon microballoons as a filler in the phenolic resin to achieve a

low density (1.21 to 1.30 gm/cc) in the as-cured state. The remaining PAN

materials had densities, in the as-cured state, that ranged from 1.50 to 1.56

gm/cc.
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Static Test Evaluation - The spun PAN and the baseline FM5055 carbon cloth were

all tested in the throat. The spun PAN exhibited the lowest throat erosion rate

and exhibited superior char integrity; the Stackpole and Polycarbon materials

performed equally well. Based on pre/post-test diametrical measurements, the

spun PAN eroded 13 and 22 percent less than the baseline (8.88 and 7.97 mils/see

versus 10.18 mils/see).

The continuous PAN materials exhibited the best erosion resistance in the

nose, inlet, and forward exit cone region. In one test, the spun PAN showed

greater erosion than the continuous PAN in the nose and inlet regions. The

filled PAN materials demonstrated lower thermal conductivity than the unfilled

PAN materials -- lower char depth. Erosion in the aft exit cone varied between

0 and 4.5 mils/see and was variable down the cone. The continuous PAN, baseline

material, and low-density PAN materials eroded approximately the same in this

environment. The mock Leno and plain weave low-density PAN materials performed

equally well in these tests.

Fabrication Evaluation - Fabrication studies included tape-wrapping rings for

process evaluations and nozzle parts for static testing. Wrap speed, roller

pressure, cure parameters, and tag end data were evaluated. All of the PAN

materials were processed with the same wrapping and cure cycles as the rayon-

based materials.

All of the PAN materials were found acceptable as alternates to the baseline

rayon material. All processed equally well with two exceptions:

The spun PAN material contaminates the wrapping area with carbon

particles during wrapping; protective clothing and filters must be
used.

• The low-density materials exhibit some variation in density from part
to part.

Edgewise compressive strength was determined from tag ends from nozzle

components. The baseline rayon precursor carbon-cloth phenolic measured 31,722-

psi compressive strength. This compares to an average of 25,585 psi for the

continuous PAN materials, with a high of 57,022 psi and a low of 11,722 psi. The
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spun PAN materials averaged 21,033 psi with very little variation. The low-

density PAN materials had an average compressive strength of 19,501 psi, with a

high of 39,227 psi and a low of 7,222 psi.

Material Properties - Thermal and mechanical properties were obtained for

selected materials. Southern Research Institute reports, SORI-EAS-85-831-5086 (6)

and SORI-EAS-85-501-5086,(7) present the data fully. The materials tested were:

• Continuous PAN phenolics (MX4961 and FM5879)

• Spun PAN phenolic (K411 and FM5834A)

• Lightweight PAN phenolic (MX134LD and FM5908)

• Rayon phenolic (FM5055)

The low-density MX134LD has the lowest thermal conductivity (similar to the

rayon) with the spun PAN K411 having the highest due to its higher heat treat-

ment.

The spun PAN materials (K411 and FM5879) showed greater across-ply shrinkage

than the low-density MXI34LD or the rayon material. In the with-ply direction

the rayon material expands much more than any of the PAN materials.

Generally, the PAN materials exhibit higher with-ply tensile and compressive

strengths and associated modulus at room temperature than the rayon material.

The interlaminar shear strengths are similar. The across-ply tensile strengths

of the PAN materials are somewhat lower. Overall, the low-density MXI34LD

material has exceptional properties.

At elevated temperatures the across-ply tensile strength and modulus of the

PAN and rayon materials appear to be similar. The rayon material has only

slightly higher strain capability in the across-ply direction up to 1500°F. In

interlaminar shear, the PAN- and rayon-based materials are equivalent at elevated

temperatures. There was very little elevated temperature data generated for the

low density materials.

6Volume I, Shuttle Rocket Motor Alternate Materials Testing Program - Part I:

Thermal Properties, SORI-EAS-85-501-5086, May 1985.

7Volume II, Shuttle Rocket Motor Alternate Materials Testing Program - Part II:

Mechanical Properties, SORI-EAS-85-831-5086, September 1985.
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In review: 1) the PAN- and rayon-based materials have similar interlaminar

shear strengths, 2) the PAN materials have slightly lower across-ply tensile

strength, 3) the standard density PANs have similar CTEs except that there is

less shrinkage with the spun PAN in the with-ply and across-ply directions, and

4) the low-density materials have CTEs similar to rayon.

Thermal Analysis - The thermal analysis was conducted using the same design

criteria used on HPM. The HPM design criteria applicable to the Block II nozzle

are:

• Main ablator thickness must be greater than or equal to twice the erosion
plus 1.25 times the char thickness

• Steel structural components cannot experience a temperature rise greater
than 10°F during motor firing

• Steel structural components cannot exceed 450°F at splashdown (splashdown

assumed to occur at 400 see)

Using the gas temperatures and pressures from the NASA-Lewis program, the

I-D ablation rate and boundary layer thermochemical properties were calculated as

a function of surface temperature based on equilibrium-controlled surface reac-

tions. These calculations were done using Aerotherm's Chemical Equilibrium (ACE)

computer program. Each ACE run also calculated the Prandtl number, Schmidt

number, and the static enthalpy for the given conditions.

The thermochemistry regions were chosen primarily to include only locations

where the ratio of Stanton number for mass transfer to Stanton number for heat

transfer, Cm/CH, was nearly constant. The value of Cm/C H was determined for all

locations of the phenolic cloth surface material by the relationship:

Cm/C H = (Pr/Sc)2/3

where:

C m -- Local Stanton number for mass transfer

C H = Local Stanton number for heat transfer

Pr = Local Prandtl number

Se -- Local Schmidt number

The local values of Pr and Sc were obtained from the local ACE solution.
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Recovery enthalpy was used as the driving force for convective heat transfer

at all locations analyzed. The value of recovery enthalpy was determined by the

relationship:

where:

H R-- H S + prl/3 (H C- HS)

H R -- Local recovery enthalpy (Btu/lbm)

H S -- Local static enthalpy

H C = Chamber enthalpy

Pr -- Local Prandtl number

Pr 1/3 -- Recovery factor for turbulent flow

The values of radiation flux were calculated based on the equation:

Qr = £ rTs 4

where:

Qr = Incident radiation heat flux (Btu/ft2-sec)

r = Stefan-Boltzmann constant (4.7611 x 10"13 Btu/ft2-sec-°R 4)

Ts -- Local average static temperature of combustion products (OR)

£ -- Emissivity of local combustion products [I - exp(-0.808pD %A1/16)]

p = Local density of combustion products including condensed species
(lbm/ft 3)

D = Local flow diameter (in.)

%AI -- Percent aluminum in propellant combustion (whole number)

Convective heat transfer coefficients were computed using the gas dynamics

turbulent boundary layer program. These were then adjusted to account for

regions of severe particle impingement observed on previous HPM firings.

The average heat transfer coefficients for each location were then varied as

a function of the predicted pressure trace following the relation:

h/Cpl x (P(0)/PChambe r Avg) 0"8 = h/Cp2
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where:

h/Cpl = Average value from a particular axial location

h/Cp2 = Value used in the computer input

P(0) = Pressure at time 0

A flow chart that illustrates the analysis procedure is shown in Figure54.
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3.7 PROPELLANT

Four Class 1.3 composite propellant formulations were evaluated in the Block II

SRM trade studies:

• TP-H1148 -- The current Space Shuttle SRM propellant was used as the
baseline control and others were compared with it.

• TP-H3340 -- This propellant is used on the Star 37X space motor. It
provided increased Isn (larger payloads) and has demonstrated high
reliability using an 8§ percent solids loading in HTPB polymer..

DL-H396 (88 percent Solids HTPB) -- This propellant is being developed under
company-sponsored programs to provide more payload capability at lower cost.
The extensive experience base acquired with other HTPB propellants (Peace-
keeper Stage I motor, Mk 70 and Mk 104 Standard Missile motors,
PAM-D II and Star 37X motors, Patriot, Mark 36) was used to establish trade-
offs during development.

DL-H397 -- A propellant which produces less than 1 percent HC1 in the
exhaust is being developed by Morton Thiokol. This Clean Propellant Program
is funded by AFRPL.

DL-H396 (HTPB) propellant is selected for the Block II SRM. It is a

modified Peacekeeper Stage I propellant which is also similar to TP-H3340 Star

37X space motor propellant. Ferric oxide (Fe20 3) burn rate catalyst is added to

the DL-H396 formulation to achieve burn rate requirements for both the heads-up

and heads-down flight modes; triphenyl bismuth (TPB) cure catalyst is added to

reduce the cure time to 4 days, as in the TP-H1148 PBAN propellant. SRM perform-

ance with DL-H396 propellant will prove as reliable as with other HTPB propel-

lants and offer potential for significant performance gain in the heads-up

configuration. DL-H396 propellant is a zero cards hazards Class 2 (DOT Class B)

(Class 1.3) propellant with essentially the same safety characteristics as TP-

H1148 propellant. In addition to improved performance, DL-H396 propellant has

nearly the same processing characteristics (short mix time, minimal labor, and

energy requirements) as TP-HII48 propellant at a lower raw material cost per

pound. DL-H396 propellant offers the potential for higher mechanical properties,

improved performance, reduced cost, and minimal technical risk.
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3.7.1 REQUIREMENTS

Propellant candidates for the Block II SRM must satisfy the baseline requirements

listed in CPWI-3300 for Space Shuttle HPM specifications (CPWl-3600 for the

RSRM):

a. Maintain integrity for storage periods of 5 years at a temperature range of
35 ° to 95°F or at a temperature exposure as low as -7°F during transporta-
tion and handling.

b. Meet performance requirements over a propellant mean bulk temperature range
of 40 ° to 90°F.

c. Provide a composite formulation capable of being bonded to the applicable
chamber via appropriate insulation, liner, and other inert items.

d. Propellants shall meet the requirements of hazard classification 1.3 as
defined in the Army material Command Regulation Safety Manual AMCR 385-
100, or DoD Contractor's Safety Manual for Ammunition, Explosives, and
Related Dangerous Materials, DoD 4145.26. The SRM segments shall have a DOT
explosive classification of Class B.

e. Propellant weight: minimum of 1,104,714 lb.

f. The safety factor for propellant physical properties and propellant/liner
bond shall be 2.0 minimum during storage and launch, with the exception that
the propellant safety factor shall be 1.4 for the forward segment.

The current Space Shuttle TP-HI148 propellant and the Star 37X space motor

TP-H3340 propellant satisfy all the CPWI-3600 requirements. Although no exten-

sive aging data are available for DL-H396 propellant, it is very similar to other

HTPB propellants and will satisfy the CPWI-3600 requirements. Extensive aging

data show HTPB propellants (Peacekeeper Stage I and Star 37X) similar to the DL-

H396 formulation to maintain their integrity for periods greater than 5 years.

DL-H397 (<1 percent HCI) propellant is not as far along in its development

so it is uncertain whether it will meet the baseline requirements. No similar

propellant is in production; therefore, no database is available for comparison.

Additional criteria for selecting the optimum propellant(s) were established

from interactions between reliability, raw materials, performance, processing,

and cost elements. Data were acquired from:
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Thermochemical calculations (density and impulse).

Comparison to similar known propellants (burn rate, exponent, rrk,
rheology, mechanical properties, aging safety, hazards, raw material
handling and storage, and propellant processing).

Vendor contacts (raw material storage cost and availability).

Facility planning (safety, cost, and availability).

These data were used to determine the interactions and trades between

elements. These trade studies were input to the design and analysis study for

propellant selection and motor performance.

3.7.2 PROPELLANT EXPERIENCE BASE

Over the past 20 years, Morton Thiokol has accumulated extensive experience with

PBAN and HTPB propellants. Millions of pounds of PBAN and HTPB propellants have

been consistently manufactured to meet performance specifications. Table 29

lists the production programs which provide a large database of PBAN and HTPB

experience: a testament to the reliability of PBAN and HTPB propellants options

for the Block II SRM.

Table 29. Major Production Programs for PBAN and HTPB Propellants

Ma ior Program Propellant Type Propellant Produced (lb)

AGILE/MALEMUTE HTPB 18,000
IPSM/PAM-D II HTPB 260,000
HARM HTPB 400,000
Peacekeeper Stage I HTPB 6,000,000
Standard Missile (Mark 104) HTPB 1,000,000
Patriot HTPB 1,700,000
Minuteman PBAN 122,000,000
Poseidon PBAN 31,500,000
Shuttle SRM PBAN 103,000,000
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TP-H1148 Space Shuttle propellant and TP-H3340 Star 37X space motor propel-

lant have proven reliable and offer virtually no technical risk. Over 100M lb of

TP-HII48 and 100K lb of TP-H3340 propellants have been consistently manufactured

to meet performance requirements. Both propellants have excellent aging

characteristics, as demonstrated with long-term sample and motor aging programs.

DL-H396 (lower cost HTPB) propellant, recently developed under a company-

sponsored program, is similar to Peacekeeper Stage I and TP-H3340 propellants and

offers minimal technical risk. Although no aging data are available, the

ingredients are similar to TP-H3340 and Peacekeeper Stage I, which have excellent

aging characteristics. DL-H396 is a modified Peacekeeper Stage I formulation

containing lower cost R-45HT/HTPB polymer, nonspherical A1, bimodal AP, and

aziridine bonding agent. DL-H396 will be as reliable as other proven HTPB

propellants. It has been consistently manufactured on smaller scales to meet the

performance requirements of the Block II SRM propellant.

The clean (low HCl) propellant DL-H397, developed under an AFRPL-funded

program, currently offers a higher technical risk than TP-H1148, TP-H3340, and

DL-H396 propellants. This propellant contains sodium nitrate (NaNO3) oxidizer,

and no propellant production program exists using NaNO 3. Although DL-H397

propellant has demonstrated high-performance reliability in small-scale mixes and

small motor testing, the experience and database are limited. It is difficult to

assess long-term aging characteristics since no carton sample or motor aging

program has been established. The difficulty in quantifying the performance

reliability of DL-H397 propellant has reduced its emphasis as a candidate for the

Block II SRM.

3.7.3 PROPELLANT RAW MATERIALS

The compositions for the four candidate propellants are given in Table30.
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Table 30 . Basic Candidate Propellant Compositions

TP-Hl148

Raw Material (HPM)

PBAN/Epoxy 14.00
Binder

HTPB/ ---
Isocyanate Binder

DOA ---
Aluminum 16.00
AP 69.72*

NaNO 3 ---
Fe20 3 0.28*
A120 3 ---

Weight Pgrcent

TP-H3340 DL-H396 DL-H397

11.00"* 12.00** 10.00

...... 2.00
18.00 19.00 19.00
71.00 68.90* 39.50

...... 29.00
--- 0.10* 0.25*
...... 0.25*

*Varied for burning rate control.
**Aziridine bonding agent, HX-752.

Raw materials used in each candidate propellant are readily available at quanti-

ties to support a launch rate of 15 flights per year. Raw material storage

facilities are similar for all propellants. There are no significant trade-offs

between TP-H1148 and DL-H396 or TP-H3340 raw materials; however, DL-H397 raw

material processing costs are currently much higher.

The important elements and properties of propellant raw materials are listed

in Table 31. The raw materials for the Block II SRM propellant candidates are

very similar so safety hazards are very similar. TP-H1148 raw material elements

are used as a baseline to determine trade-offs with raw material elements of

other propellant candidates.
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Table 31. Propellant Raw Material Elements

TP-H1148

Elements Specs and Goals (HPM)

Cost/Ib < TP-H1148 Baseline
Grinding Minimum Baseline
Availability 15 launches/yr Baseline
Storage Use existing Baseline

facilities
Handling Minimum Baseline
Specifications Similar to Baseline

TP-H1148

Quality Control Similar to Baseline
TP-H1148

TP-H3340 DL-H396 DL-H397

Greater than TP-H1148
1_Slightly greater than TP-HII48
_Same as TP-HII48
""_Slightly less than TP-HII48

TP-H1148 propellant raw material cost serves as a baseline for comparison.

TP-H3340 propellant raw material cost per pound is 26 percent higher because it

contains R-45M/ HTPB polymer, spherical aluminum, and an aziridine bonding agent.

These materials are more expensive than PBAN polymer and nonspherical aluminum,

and TP-HII48 propellant does not contain bonding agents. TP-H3340 raw material

processing costs will be slightly greater because three oxidizer sizes must be

handled compared with two sizes for both TP-H1148 and DL-H396 propellants.

Additional oxidizer weigh-up and handling increases labor costs and raw material

processing time.

DL-H396 propellant raw material costs are slightly less than TP-H1148

propellant. The DL-H396 binder system uses R-45HT/HTPB polymer. R-45HT polymer

is at least 50 percent less costly than PBAN or R-45M/HTPB polymer. HTPB

propellants generally require bonding agents to achieve acceptable mechanical

properties. Aziridine bonding agents (HX-752) are expensive and tend to offset

the cost advantage of the R-45HT polymer. If an aziridine bonding agent is used,

processing costs are equivalent to those of TP-HI148. Bonding agent influence on

propellant processing is discussed further in the processing section.
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The propellant raw material cost per pound for DL-H397 is less than TP-

H1148. DL-H397 contains R-45HT/HTPB polymer, Tepanol bonding agent, and sodium

nitrate (NaNO 3) oxidizer which are relative low cost materials. DL-H397 raw

material processing costs are currently much higher than TP-HI148 propellant

because more of the solids are ground. NaNO 3 may also require drying prior to

use. Because DL-H397 propellant is not far along in its development, it was

eliminated from further consideration at this point in the trade studies. Since

the propellant is being developed under the AFRPL Clean Propellant Program, the

DL-H397 could be considered in the future because of its potential to reduce HCI

emissions.

The number of raw materials to be inspected increases the quality assurance

efforts from TP-H1148 to DL-H396 to TP-H3340 to DL-H397. No unusual specifica-

tions exist for any of propellant raw materials. Specifications for all raw

material of each propellant candidate are already established.

3.7.4 PROPELLANT PERFORMANCE

Critical propellant properties which determine performance are the internal

ballistics properties (r b, n, zrk, Crp, isp) ' mechanical properties (orm and em),

hazards classifications, and aging characteristics. The performance properties

for each candidate propellant are listed in Table 32 . The specifications and

goals for the Block II SRM propellant are the same as TP-H1148 propellant.

Improvements in mechanical properties, density-impulse, and castability

(processibility) above TP-H1148 are desirable.

The mechanical properties for TP-HII48, TP-H3340, and DL-H396 propellants

meet or exceed the specification. TP-H3340 propellant has higher strain capabil-

ities at stresses which slightly exceed specification. DL-H396 propellant has

better mechanical properties than TP-H1148 propellant. TP-H1148 propellant

properties typically exceed SRM mechanical property requirements. All three

propellants meet the hazards requirement in specification CPWI-3600. TP-H1148,

TP-H3340, and DL-H396 are zero cards, Class 1.3 composite propellants. This

hazard classification is equivalent to the DOT explosive classification of

Class B.
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TP-H1148 and TP-H3340 propellants have excellent aging characteristics.

They maintain their performance and mechanical integrity for at least 5 years.

DL-H396 is very similar to TP-H3340 and Peacekeeper Stage I propellant and should

maintain its integrity for 5 years.

The main difference between DL-H396 and Peacekeeper Stage I or TP-H3340

propellants is the HTPB polymer. DL-H396 propellant uses R-45HT/HTPB polymer

instead of the R-45M/HTPB polymer used in most HTPB propellant production

programs. No production program currently exists at Morton Thiokol which uses R-

45HT/HTPB polymer, so extensive aging data are unavailable. R-45HT and R-45M

polymers are in the same HTPB polymer family and will age in propellants simi-

larly. Slight differences in physical properties between R-45HT and R-45M

polymers (hydroxyl number and viscosity) should not affect propellant aging

characteristics. DL-H396 propellant containing R-45HT polymer will maintain its

integrity during storage and transportation, as do R-45M propellants.

R-45HT polymer is produced with the same manufacturing facilities as R-45M

polymer. R-45HT and R-45M post-production treatment (workup) is the same. R-

45HT, a commercially-produced polymer at high rates, is manufactured at a high

temperature (HT) to increase the input of the product.

HTPB propellants using R-45M polymer exhibit excellent aging stability. An

88 percent solids HTPB propellant (TP-HII39) containing the aziridine bonding

agent (same basic formulation as DL-H396 except for R-45M versus R-45HT) was aged

72 months at 77°F.(1) Stress levels increased only moderately with some loss in

strain (Figure55). Real-time aging data for TP-H1139 propellant show that

stress levels (Figure 56) increase moderately (18 percent in 6 years) with

minor loss in strain levels (9 percent in 6 years) (Figure 57). Since R-45HT and

R-45M polymers are nearly identical and of the same polymer family, DL-H396 will

age as well as R-45M propellants (TP-HII39). Zero time strain levels for DL-H396

propellant are greater than 40 percent, and strain capabilities will be greater

than 30 percent after 6 years, assuming similar strain reductions with time found

for TP-H 1139.

I A. Grant Christiansen, "Aging of HTPB Propellants," Morton Thiokol/Wasatch

Operations, Brigham City, UT, AFRPL-TR-79-88, Pub No. 79580
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Service life predictions have been reported for MLRS propellant grain which

contains R-45HT polymer. Martin and Siron (2) report variations in MLRS propel-

lant properties indicate the MLRS motor should withstand a 20-year scenario at a

97 percent confidence level.

Propellant burn rate tailoring studies were performed to determine the best

approach to increase the burn rate of DL-H396 and TP-H3340 propellants. A higher

burn rate is required for both propellants to meet the thrust-time requirements

in the CPWI-3600 specifications or for the Space Shuttle heads-up SRM. The Block

II SRM burn rate requirement for DL-H396 and TP-H3340 propellants is 0.42 ips at

1,000 psi to match the heads-down thrust-time trace. DL-H396 and TP-H3340 should

also provide the necessary performance to allow the Space Shuttle STS to fly in a

heads-up configuration if the burn rate is increased to 0.46 ips for DL-H396 and

0.45 ips for TP-H3340 at 1,000 psi. The measured burn rate for DL-H396 without

catalyst is 0.36 ips with a 0.36 exponent at 1,000 psi. The burn rate for TP-

H3340 is 0.28 ips with a 0.31 exponent at 1,000 psi with no catalyst. Burn rate

tailoring predictions were based on data generated from:

• Space Shuttle SRM propellant tailoring experience

• The development of HTPB propellants for ballistic missiles

• Development of Class 1.3 composite propellants for Small ICBM

• Preliminary development of DL-H396 in the pint and l-gallon mixer

The burn rate requirements for DL-H396 and TP-H3340 propellants (Table33)

will depend on whether the motor performance must match the thrust-time trace

specified in CPWl-3600 or the thrust-time trace for the heads-up configuration.

Propellant burn rate tailoring trades will be established to determine the best

approach to meet the performance requirements in CPWI-3600 and for the heads-up

configuration.

2Donald L. Martin and Robert E. Siron, "Service Life Predictions of the MLRS
Propellant Grain," U.S. Army Missile Command, Redstone Arsenal, AL, Report
CPIA Pub 390, Vol. III, February 1984.
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Increasing the ground AP fraction, using finer AP and Fe20 3 catalyst were

three approaches evaluated to tailor burn rate. Each approach, shown in Table 34,

is traded against other critical propellant properties, including exponent,

processibility, cost, material availability, and experience. The best approach

meets both burn rate requirements with a minimal effect on exponent, without

adversely affecting processibility, and is not cost prohibitive.

DL-H396 is an 88 percent solids/19 percent AI propellant with a bimodal AP

distribution of 200/20 micron. Increasing the ground fraction of AP in DL-H396

will not raise the burn rate enough without causing processing problems and

reducing potlife. Increasing the 20-micron ground AP fraction in a DL-H396-type

propellant, enough to achieve the +60 mils required in burn rate, would result in

high end-of-mix (EOM) viscosities and reduce potlife. Figure 58 shows that the

20-micron AP fraction must be approximately 42 percent to achieve the 0.42 ips

burn rate required to duplicate HPM performance. This would result in an EOM

viscosity of approximately 30 kP. This will reduce useful potlife since a

viscosity of or less than 40 kP is generally required for efficient casting.

Replacing 20-micron AP with 9-micron particles and increasing the ground

9-micron fraction will raise the burn rate to meet the requirement; however, the

pressure exponent for burn rate increases dramatically. Figure 59 shows how the

exponent increases with increasing burn rate as the 9-micron fraction is in-

creased. A ground/ unground ratio of 37/63 _hould meet the burning rate require-

ment of 0.42 ips at 1,000 psi; the burn rate exponent will probably be high,

approximately 0.46.

DL-H396-type propellants with a 200/9-micron bimodal AP distribution are

easily processed (EOM viscosities, 10 kP) and should meet the burn rate require-

ment, but the exponents are high and 9-micron AP is more expensive to attain than

20-micron AP. When the ground AP fraction is of a particle size less than 15-

micron, it becomes a Class 1.1 material. This requires a batch type grinding

operation which is done in a more remote facility than the continuous grinding

operation used for 20-micron AP. Grinding AP to an average particle size less

than 15-micron is a hazardous operation which is labor and time intensive,
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resulting in higher grinding costs. Higher grinding costs and exponents for

200/9-micron bimodal AP distributions make this approach unattractive for meeting

the higher burn rate requirement.

Iron oxide was evaluated as a burn rate catalyst. A large database exists

for Fe20 3 as a catalyst in large boosters since it is used in TP-H1148 propel-

lant. Two types of Fe20 3 are used: Type I used in the SRM igniter has a larger

surface area (8.1 m2/gm); Type II (5.1 m2/gm) used in the SRM propellant.

Space Shuttle SRM propellant tailoring studies using Types I and Type II

Fe20 3 report a slightly higher burning rate effect for Type I Fe20 3. TP-H1148

burning rate, shown in Figure 60, increases from 0.347 to 0.444 ips (+97 mils)

with 0.13 percent Type I Fe20 3 and from 0.347 to 0.428 ips (+81 mils) with 0.13

percent Type II Fe20 3. Exponent also increased from 0.26 to 0.32 (+0.06) with

0.13 percent Type I Fe20 3.

The burn rate versus Fe20 3 relationship for DL-H396-type propellants was

established during a company-sponsored program. Figure 61 shows that a burn rate

of 0.42 ips at 1000 psi can be achieved with less than 0.1 percent Type II Fe20 3.

An average burn rate exponent of 0.38 + 0.02 has been measured for Type II Fe20 3.

The required Type II Fe20 3 levels to duplicate HPM burn rates is approximately

0.03 to 0.07 percent and levels of 0.10 to 0.15 percent provide for the heads-up

burn rate.

Using Fe20 3 catalyst will allow burn rate to be tailored to meet the

requirements without changing AP grind ratios. Fe20 3 will have less of a

detrimental effect on processibility at these levels (0.1 percent). Using Fe20 3

to control burn rate (for standardization) allows the AP grind ratio to be fixed

for optimum processing, rheology, and mechanical properties.

Standardizing DL-H396 propellant burn rate with Fe20 3 should result in the

same motor-to-motor burn rate variability experienced with the Space Shuttle

SRM's. The SRM burn rate variability within three standard deviations is 3.0

percent by standardizing with Fe20 3 at a fixed ground/unground AP ratio. Using

the same standardization methods for DL-H396 propellant at a fixed ground/un-

ground AP ratio will minimize motor-to-motor burn rate variability and make it
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possible to optimize propellant processing, rheology, and mechanical properties.

Addition of Fe20 3 to the DL-H396 formulation to achieve burn rate requirements

offers minimal to no technical risk.

Fe203, Type II, is a readily available materials at relatively low cost

(less than $1.00/lb). Fe20 3 will have a minor impact on propellant cost since

low levels (approximately 0.1 percent) are necessary to achieve the required burn

rate in DL-H396 propellant.

TP-H3340 is an 89 percent solids/18 percent AI propellant with a trimodal AP

distribution of 400/200/18 micron. The burn rate at 1,000 psi is 0.28 ips with a

0.31 exponent, well below the burn rate requirement of 0.42 at 1,000 psi to match

the thrust-time profile in CPWI-3600. The burn rate must be raised 0.14 ips (140

mils) to meet the thrust-time requirement. Increasing the ground 18-micron AP

fraction, and decreasing the 400-micron coarse fraction will not raise the burn

rate enough to meet the requirement. Figure 62 shows that for a 400/200/50

micron trimodal distribution, increasing 50-micron from 10 to 25 percent only

raised the burning rate 0.025 ips (+25 mils). Finer 18-micron AP would increase

the burning rate more than 50 micron AP, but the maximum increase expected would

be 0.03 ips (+30 mils). Increasing the 18-micron AP fraction significantly in a

trimodal 400/200/18 micron AP distribution would certainly cause processing

problems (high EOM viscosities).

Adding Fe20 3 to increase burn rate, as was done with DL-H396-type propel-

lants, would be the best approach. The trimodal distribution of AP could be

fixed to optimize processing, rheology, and mechanical properties. Fe20 3

addition is also an easy way to consistently standardize burn rate. Higher

levels of Fe20 3 will be necessary to meet burn rate requirements for TP-H3340

than for DL-H396 because the burn rate without catalyst is lower.

Using Fe20 3 to raise the burn rate of TP-H3340 from 0.28 to 0.42 ips (+140)

offers a higher technical risk. Higher levels of Fe20 3 (0.5 to 1.5 percent) are

required to achieve a 140-rail increase in burn rate. Addition of this much fine

Fe20 3 could cause processing problems in a higher solids level (89 percent)

propellant. Addition of high levels of Fe20 3 also degrades propellant energy

(Isp).
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The propellant burn rates necessary to fly in a heads-up configuration are

higher than the burn rates needed to match the thrust-time profile in CPW1-3600.

The burn rate for TP-H1148 must be increased from 0.43 to 0.46 ips at 1,000 psi,

from 0.36 to 0.46 ips at 1,000 psi for DL-H396, and from 0.28 to 0.45 ips at

1,000 psi for TP-H3340. Figure63 shows that 0.6 percent Type II Fe20 3 will be

required to achieve the 0.46 ips burn rate at 1,000 psi for TP-HI148 propellant.

TP-H1148 propellant can be easily processed containing up to 1.0 percent Fe20 3.

Very high levels of Fe20 3 may be required to raise the burn rate of TP-H3340

from 0.28 to 0.45 ips (170 mils). Processing difficulties could be significant

at the higher levels of Fe20 3 required to meet this burn rate. Higher Fe20 3

levels necessary for TP-H3340 to meet its burn rate requirement will further

degrade propellant performance (Isp). Therefore, the technical risks for

achieving the necessary burn rate for a heads-up configuration are greater for

TP-H3340.

3.7.5 PROPELLANT PROCESSING

The three candidate propellant formulations were compared assuming a batch mixing

process to support a Space Shuttle SRM II production rate. The current TP-HlI48

propellant served as a baseline formulation and the cost and processing para-

meters of the other formulations were compared to it. The other two formulations

were TP-H3340 and DL-H396. All three of these formulations are physical rate

limited (i.e., mixing is required only towet the solids and produce a homo-

geneous mixture). The TP-H3340 and DL-H396 formulations were compared to the TP-

H1148 propellant in terms of mix cycle time, processibility, labor and energy

requirements, and safety.

The mix cycles developed for TP-H3340 and DL-H396 propellants have times of 50 to

55 rain. This is equivalent to the mix cycle time for TP-HI148 propellant. TP-

HI 148 oxidizer is preblended (bimodal AP) and added to a premix of curing agent,

polymer, aluminum, and ferric oxide. The desired processing temperature and

minimum viscosity is achieved approximately 30 to 40 min after oxidizer addition

is completed. Homogeneity is achieved in less than 10 rain after oxidizer

addition.
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TP-H3340 propellant oxidizer (trimodal AP) is added to a premix of polymer,

curing agent, aluminum, and bonding agent as with TP-HI148 propellant. The only

difference between TP-H3340 and TP-H1148 propellants is that a trimodal AP

distribution is used which requires a third oxidizer fraction to be handled,

stored, weighed, and transported. This has a minor impact on labor costs for TP-

H3340. The mix time is essentially equivalent to TP-H1148 (50 to 55 min) so the

time to achieve homogeneity and minimum viscosity is nearly identical.

The DL-H396 mix cycle time is very similar to that of TP-H1148 and TP-H3340.

The oxidizer is added to a premix of polymer, aluminum, bonding agent, ferric

oxide, and a triphenyl bismuth quick-cure catalyst. The IPDI curative, however,

is added when the oxidizer addition is complete instead of in the premix. The

mix cycle time of 50 to 55 min is the same as TP-HlI48 and TP-H3340. Minimum

propellant viscosity and homogeneity is achieved at mix times similar to TP-

Hl148.

3.7.5.1 Processibility

The DL-H396 propellant formulation has a bimodal oxidizer distribution that is

virtually identical with the oxidizer distribution in TP-H1148 propellant. The

mix cycle calls for late IPDI addition (after oxidizer addition). Triphenyl

bismuth (TPB) cure catalyst is sprinkled on top of the premix prior to raising

the mix bowl and feeding the oxidizer. The intermediate propellant viscosities

and EOM viscosities are better than those for TP-Hl148 propellant. The mix cycle

using late IPDI addition with TPB yields a 3.5- to 4.0-hr potlife, as shown in

Table 35 , which is equivalent to that of TP-HI148 propellant. The late IPDI

addition mix cycle produces potlives of 6 hr when no TPB is added and 4 hr with

TPB. The TPB content in the formulations producing these potlives was 0.005

percent. The propellant potlife can be tailored by adjustments in the TPB

content as shown in Figure 64 . The TPB in DL-H396 propellant shortens the

propellant cure requirements. Figure 65 shows that the addition of the quick
f

cure TPB shortens the cure time to 3 to 4 days.

Addition of the IPDI to the premix in TP-H3340 formulation improves the

solids wetting and helps reduce the intermediate viscosities. The trimodal

oxidizer fraction used in TP-H3340 propellant reduces the interstitial voids in
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Figure 65. DL-H396 Propellant Pot Life Can Be Tailored
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the propellant and significantly reduces intermediate propellant viscosities.

This formulation is much easier to process than the other two candidate formula-

tions. The potlife of TP-H3340 is 8 hr while that of DL-H396 and TP-H1148

formulations typically have 4- to 6-hr potlives. The longer potlife of TP-H3340

is due to the HTPB polymer R-45M. The R-45M polymer has a lower functionality

than the R-45HT polymer used in DL-H396 propellant. The longer potlife of TP-

H3340 propellant reduces the likelihood of scrapping a mix due to expiration of

the potlife before the propellant is cast into the motor. The lower viscosities

of TP-H3340 during casting operations will also reduce the time required to cast

the propellant.

Each of the candidate propellant formulations possesses acceptable apparent

viscosities at high and low shear rates. The apparent viscosities of propellants

at various shear rates are important in the casting of an SRM. The propellant

should have an acceptable apparent viscosity at low shear rates (e.g., less than

70 kP at 0.041/sec) and a low apparent viscosity at high shear rates (e.g., less

than 35 kP at 0.37/sec). A low apparent viscosity at a high shear rate allows

the propellant to flow quickly through a slit plate. Casting the propellant

through the slit plate is essential in order to remove any entrained air bubbles

and prevent void formation in the propellant grain. Propellant which flows

quickly at high shear rates minimizes casting time. A propellant viscosity below

70 kP at low shear rates is necessary in order for the propellant to flow

outward and fill the motor once it has passed through the slit plate.

TP-H3340 and DL-H396 propellants possess better casting characteristics than

does TP-HII48 propellant. Higher casting rates can be achieved with both of

these propellants because of their lower EOM viscosities and superior or equiva-

lent potlives. Both propellants also have rheological properties which are

conducive to vacuum casting, i.e., high casting rates at high shear rates.

Previous experience with TP-H1148 propellant has shown that high casting rates

are required when vacuum casting a motor to prevent void formation. The static

head of the propellant provides the necessary pressure to force entrapped air out

of the motor grain.

Previous studies with PBAN propellants have indicated that propellant rise

rates in the motor below about 4 in./hr result in the void formation in the
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grain. TP-HI011 (a PBAN formulation) propellant samples have been cast at rise

rates of 2 and 6 in./hr. Numerous voids were found in samples cast at 2 in./hr.

This is evidence that the static head on the cast propellant was not sufficient

to force pockets of entrapped air out of the motor grain. The static head

required is a function of the propellant density and the viscosity of the

propellant when it is cast. The exact rise rates that would need to be met to

ensure elimination of voids for each propellant candidate would need to be

determined.

3.7.5.2 Labor and Energy Costs

Labor requirements for mixing TP-H3340 and DL-H396 propellants are comparable to

those for TP-H1148. The formulation used in TP-Hl148 helps keep labor and energy

costs to a minimum. TP-H3340 has some additional labor requirements because it

has three oxidizer fractions to handle, weigh, and transport. DL-H396 has two

oxidizer fractions, like TP-H1148, so handling and labor requirements are

similar.

Energy requirements to process TP-H3340 and DL-H396 propellants are nearly

equivalent to TP-H1148 when aziridine bonding agents are used. HTPB propellants

generally require bonding agents to achieve acceptable mechanical properties. If

the bonding agent is Tepanol, then the processing times are chemical rate

limited. Mix times for chemical rate limited propellants are much longer than

for TP-HII48 propellant. This is because ammonia is liberated from the reaction

between Tepanol and AP, and sufficient time must be allowed to remove ammonia.

Further, the propellant mix must be heated to 160°F to complete the reaction and

to remove all the gas formed. This increases labor costs (longer mixing time)

and energy requirements (higher mix temperature).

TP-H3340 and DL-H396 use HX-752, an aziridine bonding agent, which does not

liberate ammonia. Their processing times are physical rate limited so their mix

times are equivalent to TP-H1148. The major trade-off is that aziridines are

more expensive than the Tepanol bonding agent. This increases propellant raw

material cost per pound compared with Tepanol-containing HTPB propellants. This

is more than offset by the increased labor and energy requirements necessary to

process HTPB propellants containing Tepanol.
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The temperature at which a physical rate limited propellant is processed and

cast is selected to obtain acceptable EOM viscosities and potlives which provide

adequate time after EOM to cast the propellant. As propellant EOM temperatures

are increased, the EOM viscosities decline, but the potlife is usually shortened.

This trade-off is illustrated for TP-HI148 propellant in Figure 66. Few

propellant formulations can be processed below 125°F because the EOM viscosity

may already exceed 40 kP . A mix temperature that is extremely high (above

150°F) may shorten the potlife to less than 4 hr, and the propellant may cease to

flow before casting is completed. Adequate EOM viscosities and potlives are

achieved for TP-HII48 propellant at 135°F. The optimum processing temperature

for TP-H3340 and DL-H396 propellants is also at 135°F. Because these formula-

tions are mixed for the same amount of time and at the same temperature, the

energy requirements will be the same.

3.7.5.3 Safety_

The safety characteristics and properties of TP-H3340 and DL-H396 are nearly

identical with TP-HI148 and TP-HI011 (Minuteman). Each of these propellants has

been tested to determine ignition sensitivity to impact, friction, electrostatic

discharge, and autoignition. Uncured and cured propellant formulations of TP-

H3340 and DL-H396 were found to be comparable to TP-HlI48 and TP-H1011 in

ignition sensitivity. The ignition sensitivity of the intermediate products of

TP-H3340 and DL-H396 were also found to be comparable to those for TP-H1148 and

TP-HI011. The major difference between the formulations in terms of safety is

that the TP-H3340 and DL-H396 formulations contain IPDI. Isocyanates are

extremely toxic while the ECA curative used in TP-H1148 propellant is only

moderately toxic. Extreme precautions are required for the storage and handling

of isocyanates to prevent injury to personnel. However, safe isocyanate handling

and storage procedures have already been established because of other production

programs (Peacekeeper Stage I, Standard Missile, PAM DII, etc.).

3.7.6 CONCLUSION

Four composite propellants (zero cards, Class 1.3) were evaluated in the SRM

trade studies; TP-HII48, DL-H396 (HTPB), and TP-H3340 propellants meet the

baseline requirements specified in CPWI-3600. DL-H397 (low HCI) is not as far
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along in the development as the other candidates so its emphasis during the Block

II SRM trade studies was reduced.

TP-H1148 propellant, used as the HPM formulation, has proven reliable and

offers no technical risk. However, TP-HII48 does not offer as much potential for

performance gains as offered by DL-H396 propellant. TP-H3340 propellant is not

as attractive as either DL-H396 or TP-H1148 propellant because of higher raw

material costs and difficulty in achieving required burn rates. Further, Fe20 3

concentration greater than 1.0 percent may be required to meet burn rate

requirements for the heads-up configuration. This amount of Fe20 3 significantly

reduces propellant impulse limiting the potential for performance gains.

Processing problems could also be encountered due to the large fraction

of fine Fe20 3 necessary to achieve burn rates. TP-H3340 propellant has a

slightly higher technical risk than either TP-H1148 or DL-H396 propellant.

DL-H396 (HTPB) propellant was selected as the formulation for the Block II

SRM. Its reliability is based on similarity to other HTPB propellants. The

processing characteristics of the DL-H396 formulation are nearly identical to

those of TP-HI148 propellant and the raw material costs are less. It offers a

significant potential for performance gains in the heads-up configuration.

The best approach for DL-H396 to achieve burn rate requirements with DL-H396

propellant is to add Fe20 3 (as with TP-HI148 propellant). The low Fe20 3 levels

required (0.05 to 0.15 percent) allow the oxidizer grind ratio to be fixed,

achieving optimum processing, rheology, and mechanical properties. Addition of

Fe20 3 is an easy way to standardize burn rate and to control the motor-to-motor

burn rate variabilities similar to TP-H1148.

The raw materials used in DL-H396 propellant are readily available to

support 15 launches per year. No unusual specification, handling, processing, or

storage of DL-H396 raw materials are required. The selection of DL-H396 propel-

lant for the Block II SRM offers potential for significant performance gains at

minimal to no technical risk.
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3.8 LINER

The liner selected to bond the DL-H396 propellant grain to the silica-filled NBR

insulated case is identified as UF-2155. Its selection was based on its ability

to form strong bonds to the propellant and insulation substrates and its success-

ful use with HTPB propellants in many other rocket motors, e.g., Peacekeeper,

Standard Missile Mk 104, PAM DII Space Motor. The formulation of UF-2155 liner

is shown in Table 36.

Table36. Composition of UF-2155 Liner

Ingredient Function Composition (Weight Percent)

R-45M Polymer } 62.71
IPDI Curative

HX-868 Bonding Agent 3.39
Thermax Reinforcing Filler 33.9
Cab-O-Sil Proeess Aid 0.6 to 6 parts/100 parts*

*Adjust as required to obtain desired viscosity.

The bond strength between the NBR insulation and UF-2155 liner is much greater

than the bond between the liner and DL-H396 propellant. The mode of failure in

the DL-H396 propellant/UF-2155 liner/NBR insulation system is a cohesive failure

in the propellant. This is the same failure mode exhibited with specimens from

the present RSRM configuration; i.e., the failure occurs in the TP-H1148 propel-

lant cohesively rather than at the STW5-3224 liner/insulation bondline. The bond

strength is greater than the cohesive strength of the propellant adjacent to the

propellant/liner bondline. Consequently, as long as the DL-H396 propellant is as

strong or stronger than the TP-H1148 propellant, the present criterion for bond

strength corresponds to the relative strengths of the propellants.

With the present Shuttle grain configuration, a design safety factor of 2.0

is maintained. Since the DL-H396 propellant has greater stress and strain

capability than TP-H1148 propellant, the design safety margin is assured with the

Block II SRM design configuration.
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3.8.1 BOND STRENGTH

An even stronger bond in the peel mode has been demonstrated between NBR/UF-

2155/DL-H396 propellant than that obtained with STW4-2621/STW5-3224/TP-H1148

propellant, the present SRM configuration. A comparison of the two configura-

tions is listed in Table 37.

Table 37. Bond Strength Comparison

Test Specimen

90-deg Peel (Dli)

Failure Mode

Liner Cohesive (%)
Propellant Cohesive (%)

Tensile Adhesion (psi)

Failure Mode

Liner Cohesive (%)
Propellant Cohesive (%)

DL-H396/UF-2155/
V-45

TP-H1148/STW5-3224/
STW4-2621

23 13

100 --
-- 100

142 95

100 100

3.8.2 COMPATIBILITY

The similarity of the liner polymeric backbone to that used in the propellant and

insulation ensures the substrates will be compatible. For the Block II configur-

ation, an HTPB is used in DL-H396 propellant and UF-2155 liner. The NBR

insulation is also made of butadiene (acrylonitrile copolymer) which, with the

aid of sulfur, is vulcanized at a high temperature and pressure. For the present

Shuttle configuration, the liner and propellant have polybutadiene with carboxyl

terminations for effecting a low-temperature cure. The same NBR is used with

silica filler to form a compatible insulation substrate.

Other processes ensure a compatible liner bond. The substrates are dried

and meticulously cleaned prior to the liner application. An even precise

thickness is obtained with the sling liner process. The liner applied to the NBR

surface is partially cured prior to vacuum casting the propellant into the motor

cavity. To counteract the tendency for the isocyanate curative to diffuse from
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the propellant to the liner, an aziridine compound is added in small quantities

to the UF-2155 liner. By diffusion into the propellant this bonding agent

stiffens the propellant and promotes a strong bond.

The liner bond compatibility is further assured by selecting an optimum

curative (NCO)-to-polymer (-OH) stoichiometric ratio. This selection is achieved

by a standardization procedure carried out when any new lot of raw material is

introduced into the UF-2155 liner formulation. The optimum liner thickness is

also selected based on a standardization procedure. Since the liner replaces

propellant, a minimum thickness compatible with bond strength is selected.

3.8.3 MAINTENANCE OF BOND INTEGRITY WITH TIME

UF-2155 liner has been successfully used for bonding various propellants to

insulated motor cases. An example of how well the UF-2155 liner maintains bond

integrity is presented in Figure 67 for tensile adhesion and Figure 68 for 90-deg

peel adhesion after 1 year storage at 145°F. This example represents the bond

integrity for the Standard Missile, a Navy tactical missile. The high-

temperature environment simulates long-term ambient storage by a factor of 16,

i.e., 1 year at 145°F is equivalent to 16 years at ambient. The failure mode of

test specimens was consistently at the propellant/liner interface with grains of

propellant adhering to the liner and some liner adhering to the exposed propel-

lant.

Since the Block II SRM configuration requires as good or better aging

behavior than the present configuration, the behavior of the STW5-3224/TP-H1148

bond with time at 135°F is also shown in Figures 67 and 68. The peel and stress

levels are much lower than those obtained with the Standard Missile, the example

used for comparison. However, we expect the improvements in 90-deg peel and

tensile adhesion experienced with the Standard Missile can be duplicated with the

Block II SRM Shuttle configuration which will have the same HTPB binder.
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3.8.4 PREVIOUS APPLICATIONS

Morton Thiokol recommends the liner, UF-2155, to take advantage of the experience

and reliable performance of this liner in bonding the propellant grains to the

insulated case for various motor production contracts:

a.

b.

c.

PAM-DII. UF-2155 liner reliably bonds the TP-HI202 propellant grain to an
EPDM insulated case. This motor is used to lift payloads from the Shuttle
bay into the desired orbit and operates in a high vacuum environment.

Peacekeeper Stage I. UF-2155 liner reliably bonds the TP-HI207C propellant
grain to an EPDM insulated case.

Standard Missile. UF-2155 liner bonds both the TP-HI205C and TP-HI206C

sustain and boost grains to the polyisoprene insulated case.

The process for applying the UF-2155 liner to an insulated case is well

characterized. It has been used to bond the HTPB propellant grains over the last

10 years.

3.8.5 CASTABLE INHIBITOR

The aft end of the propellant grain on Block II center and forward segments will

be inhibited to control the burning surface area just as it is done in the HPM

configuration. An off-the-shelf liner, UF-2153, which has the thixotroping agent

Cab-O-Sil removed, will be used to inhibit DL-H396 burning. The formulation of

this liner/inhibitor is listed below:

Table 38. Formulation for UF-2153 Inhibitor

Ingredient Function

R-45M
Triethanol amine

DDI 1410
Titanium oxide

Composition
(weight percent)

Polymer 80
Cross-linker

Curative 20
Filler
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UF-2153 was selected to inhibit the end of the DL-H396 grain segment because

of its rapid cure, and because it will bond well to the DL-H396 partially-cured

propellant. After about 40 hr propellant cure, the UF-2153 inhibitor will be

poured into a cavity formed at the top of the segment grain. UF-2153 inhibitor

without Cab-O-Sil is very fluid, will fill the cavity, and cure to a solid

consistency with continued cure of the DL-H396 grain. Since the UF-2153 castable

inhibitor contains the same binder as the propellant, strong bonds are assured.

The bond and rheological behavior of the UF-2153 castable inhibitor (liner)

is well characterized, since it is used to bond TP-H1159 propellant grain to a

phenolic insulation in the HARM missile. TP-HII59 propellant contains an IPDI-

cured HTPB polymer as does DL-H396.
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3.9 INSULATION DESIGN

The current HPM internal insulation system design is based on thermal properties,

char, and material erosion characteristics of asbestos/silica-filled NBR.

Because of possible carcinogenic effects associated with asbestos-containing

materials, it is necessary to develop and qualify replacement materials.

Presently, a study is under way to replace all asbestos-containing materials in

the RSRM which will consider the development, testing, analysis, and design

efforts required to develop and qualify an asbestos-free SRM. The results from

this study at the date of this report have influenced the Block II SRM design.

This study, the Asbestos Replacement Study Plan, will not be completed until

early 1987; the insulation design described for the Block II SRM may be improved

after that time. It is the intent of the Block II study to increase reliability

while analyzing different replacement materials by ensuring that previous SRM

experience is reflected in the determination of safety factors at various

locations in the motor. Particular emphasis is placed on the insulation config-

uration at the field assembly joints between segments and at the nozzle attach-

ment joint where the insulation provides thermal protection to critical pressure

seals.

3.9.1 REQUIREMENTS AND SCOPE OF STUDY

The following guidelines for internal insulation design are taken from CEI

specification CPWI-3600 which defines the redesign criteria.

The Block II SRM internal insulation system, consisting of case side wall

thermal insulation, stress relief flaps, and propellant grain inhibitors, use

component design configurations as defined in this report. Post-test and post-

flight verification of insulation compliance with design safety factor require-

ments shall be based on a comparison of material-affected depth against minimum

design thickness.

Case insulation adjacent to metal part field joints have a minimum safety

factor of 2.0. The case insulation has a minimum safety factor of 1.5, assuming

normal motor operation and a safety factor of 1.2 assuming loss of a tastable
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inhibitor. Case insulation in sandwich construction regions (aft dome and center

segments, aft end) have a minimum safety factor of 1.5. Insulation is designed

to be capable of withstanding 12 sec of early exposure. Insulation remaining at

the end of action time shall be greater than or equal to the amount of material

required for thermal protection. Insulation performance shall be calculated

using actual prefire and postfire motor operation insulation thickness measure-

ments. Compliance with safety factor requirements shall be calculated using

minimum insulation design thickness.

The insulation is designed to ensure that the mechanical properties of the

case are not degraded by flight and/or subsequent thermal soak for worst-case

PMBT over a range of 40 ° to 90°F. The safety factor for the physical properties

of the insulation/liner bond will be a minimum of 2.0 during the life of the SRM.

The bond safety factor is based on the bond strength of the bondline.

3.9.2 SUMMARY OF SELECTED DESIGN

The insulation subsystem for the SRM Block II includes chamber insulation,

propellant stress relief flaps, forward-facing inhibitors, and aft-facing

castable inhibitors. The insulation configuration protects each case segment

during motor operation, reentry, and subsequent recovery. The case internal

insulation subsystems include: primary insulation, forward-facing (full-web)

propellant grain inhibitors, aft-facing (partial-web) inhibitors, and propel-

lant grain stress relief flaps.

The materials selected for use as internal insulation are silica-filled NBR

(SIL/NBR) and carbon fiber-filled ethylene propylene diene monomer (CF/EPDM).

SIL/NBR is used as the primary insulation in the forward and center segments. It

is also used as a bonding aid and for thermal protection in the aft segment. A

layer of CF/EPDM is used under the propellant stress relief flaps in the aft end

of the center segments. CF/EPDM is the primary insulation in the entire aft

segment. It is sandwiched between two thin layers of SIL/NBR. The purpose of

this CF/EPDM is to improve the ablation resistance of the insulation surface in '

these locations.
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These two materials were selected because of the extensive experience with

them in the HPM. Neither one uses asbestos fillers, and their respective thermal

properties and erosion characteristics are quite adequate for their particular

applications. Other nonasbestos insulation elastomers are in the development

stage and, ultimately, SRMs using them might show even better payload capacity

potential for the STS. However, for reliability and schedule purposes, Morton

Thiokol recommends the simple approach herein described.

3.9.2.1 Forward Segment

The forward segment insulation is designed primarily to protect the SRM case

during motor operation based on the ll-point star-center perforate (CP) propel-

lant grain configuration. The insulation material to be used is SIL/NBR. This

segment includes a propellant stress relief flap and a full-web tastable inhibi-

tor on the aft face of the propellant grain.

The propellant stress relief flaps are designed to reduce insulation-liner-

propellant bondline loads induced at propellant grain termination surfaces

following propellant cure, thermal shrinkage, and during SRM pressurization.

3.9.2.2 Center Seements

The SRM configuration requires the use of two center segments. The insulation

and propellant grain configuration of the two segments are identical to maintain

their interchangeability. The insulation configuration in the center segments

includes a full-web, forward-facing NBR inhibitor and a partial-web castable

inhibitor on the aft face of the propellant grain. The segments also include a

propellant stress relief flap in the aft portion of the segments. The primary

insulation material will be SIL/NBR. A layer of CF/EPDM will be used under the

propellant stress relief flap to reduce erosion in this region.

The inhibitors provide thermal protection to the propellant grain, thus

preventing ignition and burning perpendicular to the inhibitor surface. The

forward-facing, full-web propellant inhibitor is fabricated as an integral part

of the casting segment insulator. The aft-facing, partial-web inhibitor is cast
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on the aft face of the propellant during cure. The inhibitor materials provide a

chemically compatible stratum to which the liner/propellant is bonded.

3.9.2.3 Aft Segment

The aft segment insulation is designed primarily to protect the aft SRM case

during motor operation. This segment consists of a forward-facing inhibitor, the

primary case insulation, and a propellant stress relief flap in the aft dome

region of the segment. The primary insulation material used is CF/EPDM sand-

wiched between two thin layers of SIL/NBR. The two layers of NBR will be used to

ensure an adequate bond at both the case/insulation interface and the insula-

tion/liner/propellant interface. The current bond systems involving NBR provide

a chemically compatible stratum with the liner/propellant system and also

produces rubber tearing bonds (the failure occurs cohesively near the bond) at

the case/insulation interface. The layer of NBR between the CF/EPDM and the case

is also designed to provide the necessary thermal protection to the case. The

current SRM involves an NBR/liner/propellant bond system interface. The forward-

facing inhibitor and the propellant relief flap will be fabricated using SIL/NBR.

3.9.2.4 Nozzle-to-Case Insulation

The RSRM team performs postfire analysis and evaluation on all flight motors.

Postfire inspection of flight motors 16A(1) and 24A(2) revealed extensive damage

to the primary O-ring at the nozzle-to-case joint. Postfire inspections also

showed soot behind the primary O-ring on flight motors 13A, 15A, 15B, 18A, and

23A. Postfire delaminations also showed heat-affected primary O-rings but no

damage to the O-ring) on flight motors 6A, 6B, and 19B.

IS. Rodgers, "SRM Significant Problem Report, Report Number DR4-5/49 (21 day),

Secondary O-ring Erosion in the Nozzle-to-Case Joint on Mission 51-B (SRMI6A),"
TWR-15091-2, 26 July 11985.

2F. Adams, "SRM Postflight Hardware Inspection Report for STS/61C (SRM L024),
Part 1 of 2 parts KSC Inspection," TWR-15412-1, 24 January 1986.
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The postfire inspection results from the current SRM were used to establish

the Block II SRM insulation design concept at the nozzle-to-case attachment

joint. The Block II design changes the existing field joint at the nozzle/aft

dome to a welded joint, with insulation laid up over the entire aft dome and

fixed housing. A new factory-installed joint is created at the cylinder-to-aft

dome tangent point. This new joint is similar to the other cylindrical field

joints and eliminates a field joint in a very turbulent erosive environment in

the motor.

3.9.2.5 Field Joint Insulation

Postfire inspections done by the RSRM team revealed extensive damage to the

primary O-ring. The secondary O-ring was heat-affected in the center field joint

of flight motor 15B. Postfire examinations also showed soot behind the primary

O-ring on flight motors 15A (forward field joint), 22A (center field joint), and

22A (aft field joint). Other flight motors that showed damaged O-rings, after

postfire examination, were 2B, 10A, 13B, and 24A. The aft field joint of flight

motor 25B is blamed for the Shuttle Challenger accident.

The postfire inspection results from the RSRM team were evaluated by the

........ _.7 _-_. _.Av Axial.* JVXtAL a_tt_ _AIJ_.,A_.,At_.* IJt_.PI./A_aXA_ _AXttL _.*UttttllAttt_.a Xtt

the Challenger accident and therefore it became necessary to redesign a more

reliable joint.

The Block II-proposed field joint changes the existing putty-filled

labyrinth configuration to a more reliable J-seal type configuration. The J-seal

allows sealing to occur at the insulation, thus restricting the flow of hot

erosive gases to the O-ring sealing region. This is the same concept approved

for the RSRM.

3.9.3 DISCUSSION

The selection of insulation materials reconciles such seemingly opposed design

considerations and requirements as inert weight versus safety factor and improved

materials versus proven reliability. The priority assigned to each factor is

generally determined by advanced technology, development, and state-of-the-art
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designs. However, in the SRM, as in any case-bonded solid propellant rocket

motor, factors related to basic motor reliability and structural integrity

(insulation-liner-propellant composite bond integrity, for example) always

command highest priority.

Filled rubber insulation materials as a class have completely dominated the

internal chamber insulation field for many years. Reliability, design, and

fabrication versatility are the characteristics of filled NBR (and rubber

insulation generally) that led to its establishment as the industry-wide stand-

ard. With these materials, design and manufacturing activities are not con-

strained by specific component manufacturing techniques, as is the case with

reinforced-phenolic materials. Structurally, integral rubber components can be:

(1) laid up in place, cured, and bonded in one operation; (2) laid up on a

mandrel (male or female), cured, and machined to the required configuration and

thickness, then secondarily bonded in place; or (3) high-pressure molded using

standard matched metal, closed-die molding techniques, and secondarily bonded in

place. The first approach (in-place layup and cure) is our selected Block II SRM

insulation fabrication approach, this selection is based on the following

rationale:

a. Reliability -- This approach eliminates the secondary bonding operation
otherwise required at the critical case-to-insulation interface.

b. Experience -- This fabrication method is used to insulate the majority of
the large steel case space booster motors built by Morton Thiokol, Inc.

c. Cost Effectiveness -- The tooling required to support this approach is
minimal and substantially less expensive than that required to support
either of the alternate methods (no long-lead-time tools are required).

d. Versatility -- This approach offers the minimum reaction time to implement
required insulation design modifications with the lowest tooling impact.

Although material vendors presently supply far more uncured, calendered,

filled NBR material than they do the other candidate materials, the same mixing

and calendering equipment is used to manufacture all candidate materials.

However, in the quantities required to support the SRM program, supplier experi-

ence in processing NBR is a clear advantage.
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Evaluation of candidate material cost effectiveness was based on basic

material cost, present availability status (multiple vendor competitive bidding),

estimated installed material cost, and related experience and process development

factors.

The evaluation demonstrates a substantial advantage of filled NBR over the

other candidate materials. The final determining factor leading to selection of

silica-filled NBR was its prior successful usage and proven bond compatibility

with the selected liner-propellant system. Therefore, the selection of SIL/NBR

and CF/EPDM as primary insulator materials is based on evaluation of candidate

material usage and demonstrated reliability, processibility, and installed cost,

performance, and availability.

3.9.3.1 Asbestos Replacement

The HPM insulation performance database was used to design the Block II SRM

insulator using a combination of silica-filled NBR and carbon fiber-filled EPDM.

The design criteria and methods used in the current design have been out-

lined.(3,4,5) The SRM insulation performance database consists of data from DM-

5, QM-4, DM-6 (FWC), STS-8A, STS-8B, STS-9A, STS-9B, STS-10A, STS-10B, STS-16A,

and o_-,..,., .... , ,_,OlO'/-/-D, Wlllk:ll constitutes -" HFM and ............ mzututlonIll tel- IIVIIFWk.,viii pert or ilivillt;C

data currently available. With these data an average material loss rate and an

average exposure time for each longitudinal inspection station was calculated. A

standard deviation of the average material loss rates (motor-to-motor) was also

calculated. The material-affected rate of silica-filled NBR has been determined

to be approximately 1.3 times the material-affected rate of asbestos/silica-

filled NBR. This scale-up factor was determined from other large

3A. Neilson and K. Speas, "Preliminary Assessment of Space Shuttle Performance
for the High Burn Rate Heads-Up Design," TWR-14920.

4N. Eddy, "High Performance SRM Internal Insulation Design Report, Revision B,"

TWR-13065, 11 September 1984.

5prime Equipment Contract End Item Detail Specification, "Performance Design and

Verification Requirements, Space Shuttle Solid Rocket Motor Block II, CPWI-1900
for Space Shuttle Solid Rocket Motor Project," Specification CPWI-3600,
25 November 1986.
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motor firings and recent subscale motor testing. This scale-up is an estimate

and is valid only in low-erosion environments such as the forward and center

segments of the SRM. Subscale testing indicates that this scale-up factor is

conservative.

To use the HPM insulation database, a second scale-up factor is required

because the Block II design uses an HTPB propellant rather than the current PBAN

propellant. The aerothermal environment associated with SRM operation is

directly related to the chamber pressure, chamber temperature, and the composi-

tion of the combustion gases. The chamber temperature and combustion gas

composition are functions of the propellant formulation and are relatively

insensitive to the chamber pressure. Chamber pressure, however, is fixed by the

nozzle throat area and the propellant grain design which is established by the

motor design. Chamber pressure and nozzle throat area fixes the mass flow rate,

in conjunction with the grain geometry and the internal case/nozzle configura-

tion; this defines the local mass flow rate per unit area and Mach number. In

addition, the overall design and internal ballistics establishes the exposure

time of the internal case insulation at the various station locations.

The controlling parameter for convective heat transfer and mass transfer is

the mass flow rate per unit area (pV=fia/A) which, for a particular propellant, is

fixed by the operating pressure and the motor geometry. In the motor chamber,

the flow is subsonic and therefore the static pressure and temperature are

essentially the chamber conditions, which results in high radiative heating

rates. In general, radiative heating dominates in the chamber except for

specific areas depending upon the motor design. In a submerged nozzle configura-

tion, relatively high subsonic Mach numbers can be induced in the aft dome area

which leads to correspondingly high convective heating. In addition, slots and

fins in the grain design can lead to high erosion rates resulting from particle

impingement induced by confined directed flow conditions.

As discussed above, the chamber temperature is a function of the propellant

formulation and as such is strongly dependent on the aluminum content. The

erosion, and hence the insulation design, is only affected by the percent solids

as it affects the operation temperature, except for isolated particle impingement

conditions. In the case of carbon derivative materials such as CF/EPDM, the
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oxidation characteristics of the combustion gases will result in additional

erosion due to chemical reactions. In the case of silica-filled materials such

as silica-filled NBR, the primary erosion mechanism is due to melting and

therefore the loss rate should be directly proportional to the total heating

rates, radiative and convective.

In the past Morton Thiokol conducted an extensive study to correlate

material erosion with propellant and aerothermal environments. This study

included the effects of seven propellants with widely varying chemical formula-

tions and five motor configurations. As a result of this study the following

correlation was developed:

En = (Pc/Pr) 1"11 (Tc/Tr)3.69 (/3//3r)0.44

where:

En = Erosion index

Pc = Average chamber pressure

Tc = Chamber temperature

/3 = Oxidation blowing parameter

The subscript vaiues are the corresponding parameters for a _efel¢iice piopel-

lant (r) and motor configuration (c). In the above relation the pressure term

represents the convective heating, the temperature term the radiative heating,

and the /3 term the chemical reaction effects. For the Block II design two

different propellants are being considered: a high burn rate PBAN formulation

and a low-cost HTPB propellant. The PBAN propellant is a modified version of the

current HPM formulation in which the iron oxide content has been increased from

0.3 to 0.66 percent. The following is a listing of the motor operation para-

meters of interest for insulation performance assessment.

HPM Block II PBAN Block II HTPB

Chamber Pressure 650 731 728

(psi)
Chamber Temperature 3,387 3,387 3,511

(°K)
Blowing Parameter 0.107 0.106 0.095

Burn Time (see) 122 113 116
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Substituting these data in the foregoing equation for the erosion index the

effect of propellant on insulation performance is compared with the current HPM

insulation design. The results are summarized in the following table for both

CF/EPDM and silica-filled NBR insulation. The change in motor action time is

also factored into the following data.

Performance Index

PBAN HTPB

CF EPDM 1.06 1.17

Silica-Filled NBR 1.06 1.23

The data indicate that in the case of the PBAN propellant the insulation require-

ments will increase by 6 percent over the existing HPM design for both the

CF/EPDM and the silica-filled NBR insulation systems. For the HTPB propellant,

the CF/EPDM requirement increases by 17 percent and the silica-filled NBR by 23

percent. The large increase for the HTPB propellant design is because of the

difference in chamber temperature, 3,511°K compared with 3,387°K for PBAN

propellant. The indicated increase is mitigated by the lower blowing parameter

associated with the HTPB propellant. Since the silica-filled NBR is primarily a

melting process, the effect of the blowing parameter was not included in the

design of that insulation.

This scale-up factor, along with the 1.3 asbestos/silica NBR-to-silica NBR

scale-up was applied to the HPM material loss rate data using the following

formula:

MLR -- (scale-up * average MLR) + (3 * standard deviation)

Recent subscale testing indicates that in low-velocity environments the standard

deviation of the material loss rate data exhibited by silica NBR is not any

greater than the standard deviation of material loss rate data for asbestos/

silica NBR.

The following criteria were used to determine the design thickness of the

insulator at each longitudinal station location in the motor.
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a.

b.

c°

d.

e.

Insulation Design Equation

DT-- SF(ET* MLR), SF = 1.5

Case Wall Insulation Design-Castable Inhibitor Failure

DT -- SF (ETinhi b. MLRinhib) SF = 1.2

Thermal Protection

DT -- (MLR * ET) + TP

Twelve-second Early Exposure

DT = MLR (ET + 12 sec)

Minimum Design Thickness

DT -- 0.090 minimum

DT = Design thickness

SF = Safety factor

ET -- Exposure time

MLR -- Scaled up material loss rate (_ + 3 sigma)

ETinhi b = Exposure time in the event of castable
inhibitor failure

MLRinhi b = Material loss rate in the event of castable
inhibitor failure

TP -- Thermal protection required (200°F maximum case temperature)

The maximum value derived from the five design criteria tests was used as the new

minimum design thickness at the specified longitudinal location. Figures 69

through 72 show the minimum design thicknesses at part of the inspection stations

in each segment. Also shown are the average scaled-up material loss rates and

safety factors and the average +3 times the standard deviation material loss

rates and safety factors. Table 39 shows the weight impact study of the insula-

tion thicknesses in comparison to the current HPM design and performance assuming

noninterchangeable center segments. Table40 shows the same data assuming

interchangeable center segments.

3.9.3.1.1 Case Insulation Alternatives

Different types of available insulation materials were evaluated along with

filled rubbers. A list of filled rubbers that have been tested and will be
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tested is in Table 41. Other alternatives include trowelable filled mastics,

tastable and sprayable materials, and reinforced phenolics.

Reinforced Phen01ics. The rigid and semirigid reinforced phenolic materials,

which possess excellent erosion resmtance, were considered potential candidates

for aft dome insulation. These materials have limited use because of high raw

material costs, component fabrication and assembly costs, and because of techni-

cal problems of fabricating and installing components of the size and weight

required. Component fabrication (both one-piece or segmented) using this type

material requires costly, high-pressure, matched metal molding dies, thus

incurring a large expenditure early in the program.

The Asbestos Replacement Study Team is currently conducting tests (see

Section 3.9.3.2.1) on an elastomerized carbon phenolic material (manufactured by

U. S. Polymeric Corp.) that would (if tests are conclusive) replace the CF/EPDM

in the high erosive area in the aft dome. To date these tests are inconclusive

and therefore this concept is not included as a candidate in the Block II SRM

design.

Trowelable Mastics and Sprayable Materials. The trowelable mastics and spray-

able materials that offer a potentially low installed cost were eliminated as

candidate primary chamber insulation materials because production experience and

demonstrated reliability in large motor programs are lacking. The use of

trowelable mastic materials that have received the widest usage has been limited

to demonstration motors. Fabrication of insulation components using these high-

viscosity materials has been limited generally to the "in-place" method, which

involves applying one or more layers of the material directly to the case

interior surface to obtain the required thickness.

Our experience with viscous mastic materials has identified a basic problem

with air entrapment. This problem has precluded extensive use of these materials

in production motors. Motors insulated with trowelable mastic materials have

required extensive work to inspect, identify, and repair voids and porous defect

areas. A program to develop improved material processing properties, inspection

methods, and repair procedures would involve substantial effort and associated

costs and project risk.
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3.9.3.2 Nozzle-to-Case Insulation

The Block II baseline design for the aft dome insulation eliminates the existing

field joint at the nozzle and creates a new factory-installed joint at the

cylinder-to-aft dome tangent point (Figures 73 through 75). To eliminate the

need of extensive tests involving a new CF/EPDM-to-case bond system, a thin layer

of SIL/NBR will be used between the CF/EPDM and the case. Analysis requires a

maximum CF/EPDM thickness of approximately 5 inches.

The Block II design modifies the method in which the existing aft dome and

segment are insulated and propellant is cast. A summary of the new procedure is

included in Section 3.9.4.

3.9.3.2.1 Nozzle /Aft Dome Alternatives

The SRM Asbestos Replacement Study Team is in the process of conducting a series

of subscale tests to evaluate different candidate materials. The test section

(Figure 76) is attached to an end-burning, seventy-pound charge (SPC) motor

which provides burn times from 10 to 85 see. The test section is designed with

low-, medium-, and high-velocity regions so effects can be evaluated at different

Math numbers. Each test evaluates three materials: a baseline asbestos/silica-

filled NBR and two candidate materials.

An NBR-filled, carbonized, rayon-cloth phenolic (R2121), provided by U. S.

Polymeric, has shown promising erosion data. Char motor performance data are

shown in Tables,42and 43 and in Figures 77 through 80. An EPDM filler will also

be tested later in the program.

Although a final decision on these materials cannot be included in this

Block II final report, serious consideration is given to these promising data.

3.9.3.3 Field Joint Insulation

A number of joint insulation configurations have been evaluated to determine an

insulation joint configuration which will best meet the requirements of protect--

ing the steel case hardware and the primary and secondary O-ring seals during
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Table 43. Char Motor Performance--Motor No. ARN 107

DATE:11103/86 PROPELLANT:TP-HI148 PRESSURE:808.5 psiz. TIE: 12.13 sec.

DISTANCE

ALON6

DATA CHAMBER

PoJNr (in.)

LOW

1 0.5

2 1.0

1.5

4 2.0

S 2.5

6 3.0

7 3.5

R_q Sum6aryfor all pieces in each section.

lSTW4-2621) _A_A

STW4-2621 Std. NBR-27 Std. R2121 Std. STANDARD A_RAGE RATIO No.

V44 type Oev. Oev. Oev. _! MfN Radius z/il Ray basis

2.50 0.61 3.74 0.42 3.4l 1.82 3.$2 1.49 3.523 214.612 0.0027

2.59 0.51 4.10 0.29 1.21 3.56 3.22 i.92 3.519 214.115 0.0027

2.70 0.53 4.34 0.23 1.48 3.68 3.53 1.98 3.521 214._6 0._29

2.71 0.24 4.49 0.10 2.89 2.93 2.89 2.24 3.523 214.544 0._27

2.87 0.28 4.60 0.28 4.20 2.43 3.16 2.42 3.525 214.863 0._27

2.90 0.33 4.83 0.43 5.37 1.89 3.34 2.45 3.$28 215.217 0.0027

2.84 0.45 5.14 0.53 S.35 1.48 3.46 2.32 3.527 215._9 0._27

MEDIUM

1 6.5
2 8.8

S 10,5

4 11.3
5 12.0

6 12.8

7 13.5

8 14.3

9 15.0

10 15.8

5.61 0.39 8.95 0.87 12.28 1.34 6.03 5.10 0.947 15.516 0.0384

6.75 0.76 10.59 0.15 12.08 1.86 7.54 5.73 0.894 13.812 0.0431
7.32 0.9[ 10.28 0.44 12.59 ].37 8.06 6.04 0.8_ 12.064 0.0493

7.89 0.60 10.49 0.47 [3.3Y 1.59 8.51 7.08 0.780 I0.517 0.0_7

8.56 0.80 10.82 0.30 [3.81 1.03 9.58 7.63 0.723 9.040 O.OL_O

8.44 0.95 !1.83 0.62 14.76 0.86 9.6l 7.30 0.669 7.747 0.0770

10.27 0.65 11.90 1.32 15,14 0.94 10.77 9.36 0.616 6._ 0.0911

1].51 0.46 IS.02 1.08 15.84 1.21 14.00 12.89 0.569 5.606 0.1068

HI6N

I 17.0

2 18.0
3 19.0

4 20.0
5 21.0
6 22.0
7 23.0

8 24.0

9 25.0

10 26.0

13.45 2.46 16.82 0.34 16.62 3.45 15.92 10.99 0.542 5.085 0.1179

16.88 1._5 17.70 0.63 18.43 2.44 18.23 15.53 0.541 5,060 0.118_
18.37 1,24 20,78 1,15 20.22 1.00 19.6l 17,12 0,54l 5,069 0,1183

21.01 0.16 24.88 0.89 19.89 0.92 21.17 20.86 0.543 5.089 0.1178
22,10 1._2 27,18 1,95 20,35 1.26 23,42 20,78 0,537 4,_3 0,1201

23,21 0,52 28,54 i.92 20.03 1.27 23.73 22,70 0,529 4,842 0,1239
23.27 1.53 30.83 2.17 21.40 0.04 24.81 21.74 0.520 4,_6 0.1287

2_.44 1.53 31.34 1.77 20.75 0. i8 26.97 23.92 0.507 4.4.46 0.1_52

25.50 2.27 32.87 1.48 20.66 0.42 27.77 23.23 0.496 4._2 0.1415

24.27 2.10 35.36 0.56 17.65 0.52 26.37 22.18 0.48? 4.127 0.1458

STW4-2261

WBfl-27

R2121

- NBRIAsblSilica suppliedby KirkhillRubberCo.

- NBR/CarOonFiberFilled- suppliedby U.S.Polymeric.

- NJRICarbonizedRayonCloth - suppliedby U.S.Polymeric
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motor operation. The design approach selectedfor the Block II design isan

unvcntcd system which prevents gas flow within the joint.

The baseline field joint insulation configuration is referred to as the J-

seal (Figure 81). This configuration incorporates use of a thin adhesive

bondline. The J-seal configuration is fabricated with the inboard leg of thc

tang insulation in a deflected condition. Upon assembly this leg provides

contact with the clevis insulation to assure that the gap between the tang and

the clevis insulation is closed off. The deflection leg of the tang insulation

is designed to assure that, under worst-case thermal conditions and manufacturing

tolerances, contact between the tang and clevis insulation is maintained. The

deflection leg was designed for:

a. At 90°F the nominal flap gap at assembly will bc 0.075 inch.

b. Based on thermal variations in the propellant grain and motor pressuri-
zation effects, 0.250 in. of deflection is incorporated into the

design.

c. To assure that contact always occurs between the tang and clevis joint
insulation on assembly, an additional 0.100 in. of deflection is
incorporated into the design.

d. A minimum flap dcflcction gap of 0.050 in. is incorporated into the
design to assure that the deflection flap pressurizes first at motor
ignition, more rapidly than a leak path within the joint.

c. The J-seal configuration is designed so that upon motor prcssurization
the deflection flap is pressurized, forcing the deflected leg against
the clevis insulation, scaling off any leak paths within the joint, and
reducing the amount of frcc volume dccp in the joint.

An adhesive system is used to bond the deflected leg of the tang insulation

to the clevis insulation on assembly. The adhesive system recommended for the

case field joint is a pressure-sensitive adhesive. This adhesive, which has a

thickness of 2 to 5 mils, is applied to assure a bond over the length identified

in Figure 81. Application of the pressure-sensitive adhesive will probably bc

accomplished at the factory just prior to segment shipment. A protective backing

remains on the adhesive to assure there is no contamination. Prior to assembly

the protective backing is removed, leaving the bonding material for mating.

An alternate adhesive system uses a mastic-type adhesive. With the mastic

material, the tang and clevis insulation outboard of the tip of the J-seal
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deflection flap is covered with a Teflon tape or FEP film to assure there is no

bonding. This provides an area where joint deflection may occur and reduces the

forces required for disassembly of segments. This type of adhesive system would

be applied at KSC just prior to segment mating.

3.9.3.3.1 Field Joint Alternatives

A number of other joint configurations have been evaluated to determine their

attributes for protecting the field joints and seals during motor operation. An

overview of the primary designs that were evaluated is presented in Figure 82.

Figures 83 through 88 show designs considered, with their accompanying pros,

cons, and brief reason as to why they were not selected. Designs outlined in

Figures 83, 85, and 86 have been tested successfully in subscale motors as part

of the RSRM effort and reports are available.(4)

J-Seal Flap Stiffener. The J-Seal configuration selected as the baseline for the

Block II SRM requires the use of bonding/sealing materials to ensure actuation of

the J-seal flap during motor pressurization. An alternative design (Figure 87)

has been evaluated should the bonded seal develop problems. (5) This design

features a metal stiffener embedded in the J-seal flap for forcing the flap

firmly against the clevis insulation. This concept will be tested as part of the

redesign effort.

The potential advantage in this type of a design is the elimination of any

adhesive in the joint while maintaining positive pressure between the J-seal flap

and the clevis insulation interface. This flap stiffener concept also allows for

compressed air, at the base of the J-seal, to escape without sacrificing the

integrity of the seal.

4Ibid, page 3-201.

5j. F. Miller, "Space Shuttle SRM J-Seal Stiffener Design Concept,"
30 November 1986.

TWR-16003,
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Vented Interlock. A vented interlock design, as defined in Figure is also

being carried as an alternate to the baseline J-seal configuration. The vented

interlock configuration allows for uniform pressurization at the capture feature

upon ignition. It incorporates a series of 18 circumferential interlocking

protrusions and recess areas on the tang and clevis insulation. Upon assembly

each protrusion mates up to a corresponding recess area to form a restriction

within the joint. Pressurization to the capture feature occurs through gaps

(0.20 to 0.40 in.) located between the end of each protrusion and the recess

area. The length of the protrusions is designed so that upon assembly a minimum

gap of 0.02 in. would exist between the protrusion and recess area. This was

designed to assure that no potential case/insulation dcbond problems arc created

due to an interference problem. Upon motor pressurization the tang and clevis

insulations deflect away from each other, forming a wider joint gap. The

interlocks are designed to assure that under worst-case gap conditions approxi-

mately 50 percent of the interlock blocking feature remains to restrict flow.

Heat Barrier. As part of the RSRM effort, both Morton Thiokol and MSFC havc

conducted preliminary conservative analyses to evaluate the severity of circum-

ferential flow within the O-ring groove in the capture feature of the current

baseline case field joint. These conservative analyses assumed two leak paths

through the insulation bond and an O-ring groove modeled as a smooth tube. These

analyses predicted flow velocities on the order of 100 ft/scc. The assumption

that a pressure differential exists, driving gas flow for full motor burn,

produced unacceptable capture feature heating.

Other internal joint potential heating mechanisms that could be of concern

are gas impingement and the accumulation of slag particles on seals and metal

parts. Extensive slag and molten aluminum oxide accumulations might cause

unacceptable thermal degradation.

Heat barriers are a proposed alternative solution to these potential thermal

degradation issues. As part of the RSRM effort, heat barriers are being eval-

uated to protect the seals and metal parts from thermal degradation due to

circumferential flow, hot gas jet impingement, slag impingement, and slag

accumulation.

PRECEDING PAGE BLANK NOT FILMED
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The barriers would likely be positioned between joint insulation surfaces,

as close to the metal parts as practical. Figures 83 through 87 show typical

heat barrier locations.

The function of the barriers would be to provide an extra measure of thermal

protection to pressure vessel seals and metal parts. This extra protection would

not be required under normal motor and joint operating conditions, but it could

substantially improve metal parts and seal survivability in case of anomalous

performance. The scenarios addressed include:

a. Jet impingement, single and multiple leak paths through the insulation
joints.

b. Circumferential flow, low-velocity hot gas circulation occurring in the
insulation joint.

Heat barrier materials may be divided into four categories: refractories,

sacrificial coolants, intumescents, and composites of the three. The follow-

ing is a brief discussion of the materials in terms of these four categories.

ao Refractories are capable of surviving the high-temperature, high-pressure,
and chemically reactive environment for the duration of the motor burn.
Refractories are potentially good, continuous flow blockers by virtue of
their survivability. However, their performance at higher temperature might
make them incompatible with surrounding materials. At high temperatures
they may conduct heat into adjacent insulation, inducing thermal degrada-
tion.

b. Coolant materials serve to remove energy from hot gases invading the joints.
These ablative materials remove energy from the gases through absorbed
latent heat, heats of fusion, boiling, and sublimation, as well as off-
gassing, producing cool volumes of mixing gas.

C. Intumescent materials are being evaluated as a part of the coolant develop-

ment effort. Commercially available intumescents swell to 150 times their
initial volume. In addition to swelling, they may function as ablative
coolants. Teflon, although not thought of as being intumescent, swells by a
small percentage when heated.

d° Composites of coolant fillers in refractory matrices are designed to survive
the SRM environment while providing a gas cooling function. Binder mate-
rials serve to hold coolants in refractory matrices.

Initial heat barrier material screening has been performed. A large number

of possible materials are being procured and evaluated for selection by the RSRM

team. This list includes:
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a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

I.

m.

n.

O.

Knitted tungsten wire, 0.5- by 0.5-inch.
the density is approximately 15 percent.

Knitted stainless steel, 0.5- by 0.5-inch.
inch. The density is 20 percent.

Knitted stainless steel, 0.5- by 0.5-inch.
inch. The density is 10 percent.

The wire diameter is 0.0045-inch.

The wire diameter is 0.0045-

The wire diameter is 0.0045-

Knitted stainless steel, 0.5- by 0.5-inch.
inch. The density is 30 percent.

Filament wound graphite fiber with Vamac ®

Filament wound Kevlar fiber with Vamac ®

The wire diameter is 0.0045-

rubber binder, 0.5- by 0.5-inch.

rubber binder, 0.5- by 0.5-inch.

Teflon-impregnated carbon fiber braid, 0.5-inch.

Braided virgin Teflon, 0.5- by 0.5-inch.

Corrugated Grafoil tape, 0.5- by 0.015-inch.

Woven ceramic cloth on knitted stainless steel hollow core, 0.5-in. diameter
with 0.5-in. tail.

Reticulated vitreous carbon, ring samples, 12-in. OD by 8-in. ID by 1.0-in.

height. Pore sizes of 45 and 100 pores per linear inch.

Reticulated vitreous carbon coated with nickel, ring samples, 1.5-in. OD by
0.75-in. ID by 1.0-in. height. Pore sizes of 10 and 80 pores per linear
inch.

Reticulated silica carbide, ring samples, 12-in. OD by 8-in. ID by 1.0-in.
height, and 1.5-in. OD by 0.75-in. ID by 1.0-in. height. Pore sizes of 10,
45, 80, and 100 pores per linear inch.

Compressed aluminum foam, 0.55-in. by 0.4-inch. 80 pores per linear inch.

Aluminum foam coated with Teflon, a compressed bar, 0.55- by 0.4-inch at 80

pores per linear inch, and a ring, 1.5-in. OD by 0.75-in. ID by 1.0-in.
height at 40 pores per linear inch.

These materials are being subjected to hot gas impingement test as part of

the RSRM effort. Capability of these materials and the necessity for any

additional heat barriers will be established in the ongoing test programs and

results can be incorporated in a final Block II SRM, if necessary.
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3.9.4 MANUFACTURING PROCESS ALTERATIONS

Both manual and semimechanized layup techniques will be used to rubber insulate

the Block II SRM casting segments. The primary insulation is a silica-filled NBR

used in varying thicknesses up to 0.200 inch. Quantities of carbon fiber-filled

EPDM will also be used in high erosion areas of the center segments and the aft

segment. Uncured NBR extrusions will be procured for use in the layup where

irregularly shaped pieces are needed which are normally applied in the thicker

insulation area of the segment joints.

The major modification to existing HPM insulation installation occurs in the

aft dome. The aft dome will be insulated by manually laying up precut pieces of

NBR and carbon fiber-filled EPDM. SIL/NBR is layed up as a substrate over the

entire aft dome and nozzle fixed housing. Then CF/EPDM will be laid up over the

aft dome in a series of "debulking" operations. This will be accomplished by

laying up approximately one-third of the required thickness; then the entire unit

will be vacuum bagged. This minimizes entrapped air and compresses the rubber.

This operation will be repeated until the required design thickness is achieved,

with allowance for curing shrinkage. Then the premachined nozzle carbon phenolic

insulator will be attached and again the entire unit will be vacuum bagged,

autoclave cured, and inspected as a separate part.

Insulations for the aft dome stress relief flap will be installed and

vulcanized in a contoured tooling/casting dome (Figure88) with appropriate

release materials. The bonding of the propellant to the flap will be accomp-

lished during the propellant casting of the aft segment. The tooling/casting

dome will be used to establish the aft dome propellant and flap contour. Upon

removal of the tooling dome, the outside material line (OML) or inside of the

relief flap will be measured. The measurement will be compared to the inside

material line (IML) of the insulated aft dome. The insulated aft dome IML will

then be machined to ensure proper stress relief and joint pressurization prior to

mating and installation to the aft segment (Figure 89).
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3.10 IGNITER

The current HPM ignition system consists of an internally mounted pyrogen igniter

and initiator and an externally mounted safety and arming (S&A) device. The

performance of the ignition system has been satisfactory in all qualification

tests and flights and no major design changes are required. The Block II

ignition studies were centered on increasing the reliability of the system while

maintaining the same basic configuration. Improvements for the Block II SRM

ignition system will consist of shortening the igniter chamber to reduce inert

weight, and eliminating potential leak paths by using more reliable attachment

and sealing methods.

3.10.1 DISCUSSION

The HPM igniter has a 40 starpoint propellant grain. Twelve inches of starpoints

were cut down during development testing to reduce initial surface area which

decreased the ignition shock and mass flow rate. The igniter chamber was not

changed to account for the reduction in the propellant volume, so igniters were

cast in chambers with reduced starpoints. The Block II SRM igniter chamber

length will be reduced by 8.6 in. by removing the cutback and adding 3.5 in. of

full length starpoints. The total weight savings for the chamber, internal, and

external insulation will be approximately 60 lb.

Other design changes included in the Block II SRM igniter are shown

in Figure 91.

1. Change the direction of the attach bolts between the igniter adapter
and the igniter chamber.

2. Replace the inner Gask-O-Seal _' (adapter to chamber joint) with an

O-ring seal.

. Remove environmental seals between S&A/igniter adapter and igniter/

forward dome. (Gask-O-Seal® will remain, and will be made of 321
stainless steel instead of cadmium-plated 4130 steel.)

4. Eliminate vacuum putty in joint areas.
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Pressure Transducer

and Special Bolt

Gask-O-Seal

Safe and Arm

Present HPM Ignition System Configuration

Nozzle

F Insert

\

Stat-O-Seal and

Special Washer

Pressure

Transducer

Block II SRM Ignition System Configuration

Igniter Chamber

Gask-O-Seal

Safe and Arm

Face-
Sealing
O-ring

°° \\
Inconel Bolt and Washer 87354-9A

Figure 91. Comparison of Current and Block II SRM Ignition Systems
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Liner used on SRM cases (STW5-3229) will be used for the improved

igniter.

Eliminate six environmental seals on the igniter initiator nozzle

parts.

These changes will eliminate 41 seals from the igniter assembly by elimin-

ating seals at attach bolts, special bolts, and inner Gask-O-Seal ® and replacing

them with a face-sealing O-ring.
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